期刊文献+

基于自回归模型的信号特征提取研究 被引量:4

Research on Feature Extraction of Signal Based on Autoregressive Model
下载PDF
导出
摘要 自回归参数模型系数法是信号特征提取的重要方法。采用了自回归模型的不同算法对声信号数据进行了对比分析讨论。通过实验仿真证明了信号预处理的重要性及不同特征提取方法对检测结论的不同影响。 Parameter method of using autoregressive model is one of most important way to signal extraction. The signal data from different algorithms of autoregressive model is analyzed. Simulation results prove that different outcomes attributes different extractions and the importance of preprocessing.
作者 任雁 王洋
出处 《电声技术》 2009年第5期73-76,共4页 Audio Engineering
基金 山西省太原市2008年大学生创新创业专项(3870)
关键词 自回归模型 特征提取 目标检测 autoregressive model feature extraction target detection
  • 相关文献

参考文献4

二级参考文献31

  • 1程晋一,余滨,段采宇.信息化战争条件下陆军装备需求研究[J].国防科技,2007,28(8):29-34. 被引量:2
  • 2[1]PICARD R W.Affective computing[M].Cambridge:MIT,1997.
  • 3[2]MURRAY I R,ARNOTT J L.Toward the simulation of emotion in synthetic speech:a review of the literature on human vocal emotion[J].Journal of the Acoustical Society of America,1993,93(2):1097-1108.
  • 4[3]SCHERER K R.Adding the affective dimension:a new look in speech analysis and synthesis[C]∥Proceedings of International Conference on Spoken Language Processing.Philadelphia:IEEE,1996:1808-1811.
  • 5[4]NICHOLSON J,TAKAHASHI K,NAKATSU R.Emotion recognition in speech using neural networks[J].Neural Computing & Application,2000,9(4):290-296.
  • 6[5]JAIN A,DUIN P,MAO J.Statistical pattern recognition:a review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(1):4-37.
  • 7[6]VAPNIK V N.The nature of statistical learning theory[M].Berlin:Springer,1995.
  • 8[7]DELLAERT F,POLZIN T,WAIBEL A.Recognizing emotion in speech[C]∥ Proceedings of International Conference on Spoken Language Processing.Philadelphia:IEEE,1996:1970-1973.
  • 9[8]LEE C M,NARAYANAN S,PIERACCINI R.Recognition of negative emotions from the speech signal[C]∥Proceedings of IEEE Workshop on Automatic Speech Recognition and Understanding.Trento:IEEE,2001:240-243.
  • 10[9]KWON O W,CHAN K,HAO J.et al.Emotion recognition by speech signals[C]∥Proceedings of Eurospeech.Geneva:ISCA,2003:125-128.

共引文献24

同被引文献30

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部