期刊文献+

基于自适应延时神经网络的短时交通流预测

Forecast of Short Time Traffic Flow Based on Adaptive Time-Delay Neural Network
原文传递
导出
摘要 为了提高交通流诱导系统的性能,研究了一种基于自适应延时神经网络算法的短时交通流量预测模型,该算法与传统的神经网络方法相比在神经网络的结构和神经网络的训练方法两个方面进行了改进,更适用于预测具有不确定性、非线性、动态性等特征的短时交通流,同时用Matlab7.0编写程序对算法进行了仿真实现,根据仿真结果的分析验证了算法时实性和精确性. For improving the performance of Traffic How Guidance System, research of short time traffic flow forecast based on The Adaptive Time-Delay Neural Network algorithm, compared to traditional Neural Network algorithm, it has been improved in configuration and training method of Neural Network, ATNN is the same with uncertain characteristics, nonlinear and dynamic of the traffic flow. Simulation of the algorithm is carried on using Matlab7.0 procedure and the analysis of the result confirms the effectiveness and accuracy of the algorithm.
机构地区 [ [
出处 《数学的实践与认识》 CSCD 北大核心 2009年第9期128-133,共6页 Mathematics in Practice and Theory
关键词 短时交通流 自适应延时神经网络 神经网络结构 训练方法 short time traffic flow The Adaptive Time-Delay Neural Network algorithm configuration of Neural Network training method
  • 相关文献

参考文献5

  • 1Waibel A, Hanazawa T, Hinton G, Shikano K, Lang K. Phoneme recognition: Neural networks versus hidden markov models [J]. In Pro IEEE Int Conf Acoust, Speech, Signal Processing, 1988. 107-110.
  • 2Lin D T, Dayhoff J E, Ligomenides P A. Adaptive time-delay neural network for temporal correlation and prediction[J]. In Intelligent Robots and Computer Vision Ⅺ: Biological, Neural Net, and 3-D Methods, Proe. SPIE, Volume 1992,1826:170-181.
  • 3Martin T.Hagam.神经网络设计[M].戴葵,译.北京:机械工业出版社,2002.
  • 4王琛.基于Levenberg-Marquardt算法的用户鉴别[J].山西师范大学学报(自然科学版),2005,19(2):17-20. 被引量:8
  • 5Baher Abdulhai, Himanshu Porwl, Will Recker. Short-tern Traffic flow prediction using neuro-genetic algorithms[J]. ITS Journal, 2002,7: 3-41.

二级参考文献8

  • 1Zhang C S, Sun Y H. AR Model for Keystroke Verification[J]. IEEE International Conference on Systems, Man, and Cybernetics,2000,4:2887~ 2890.
  • 2Obaidat M S, Sadoun B. Keystroke Dynamics based Authentication. Biometrics Personal Identification in Networked Society [ M ]. Kluwer Academic Publishers, 1998:213 ~ 225.
  • 3Lin D T. Computer - access Authentication with Neural Network based Keystroke Identity Verification [ J ]. International Conference on Neural Networks, 1997,1:174 ~ 178.
  • 4Miller B. Vital Signs of Identity (Biometrics) [ J ]. IEEE Spectrum, 1994, ,31 (2) :22 - 30.
  • 5Monrose F, Rubin A. Authentication via Keystroke Dynamics [ J ]. Proceedings of the Fourth ACM Conference on Computer and Communications Security, 1997,4:48 ~56.
  • 6Monrose F, Rubin A. Keystroke Dynamics as a Biometric for Authentication [J]. Future Generation Computer Systems, 2000, Vol. 16 (4): 351-359.
  • 7刘学军,陈松灿,彭宏京.基于支持向量机的计算机键盘用户身份验真[J].计算机研究与发展,2002,39(9):1082-1086. 被引量:26
  • 8朱明,周津,王继康.基于击键特征的用户身份认证新方法[J].计算机工程,2002,28(10):138-139. 被引量:13

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部