期刊文献+

水蒸气抑制熄灭杯式燃烧器扩散火焰的机理 被引量:2

原文传递
导出
摘要 在自行研制的杯式燃烧器的基础上,采用实验与数值模拟相结合的方法对水蒸气抑制熄灭甲烷/空气扩散火焰的过程进行了研究,分析火焰抑制熄灭现象产生的过程与作用机理,得到了临界灭火浓度与协流氧化剂流量的变化规律.结果表明,水蒸气抑制熄灭杯式燃烧器扩散火焰是典型的局部火焰熄灭机理.随着水蒸气浓度的增加,杯式燃烧器扩散火焰的根部首先向内收缩并悬举至新的稳定高度,当根部反应核的燃烧速率随着火焰温度下降受到极大抑制后,火焰根部的预混区将因更多水蒸气的扩散稀释作用而无法继续维持火焰向外的振荡传播过程,火焰会脱离燃烧杯面而熄灭.破坏火焰根部核心燃烧区的反应条件是熄灭扩散火焰的关键.水蒸气临界灭火浓度在一定的氧化剂流量范围内不依赖于空气流量,在临界灭火浓度曲线上存在一"平缓区".实验测得的临界灭火质量百分比浓度分别为水蒸气(16.7±0.6)%、二氧化碳(15.9±0.6)%、氮气(31.9±0.6)%,与数值模拟结果合理吻合.
出处 《中国科学(E辑)》 CSCD 北大核心 2009年第5期987-993,共7页 Science in China(Series E)
基金 国家重点基础研究发展计划(“973”计划)(批准号:2001CB409609) 科技部国家重点实验室专项、火灾科学国家重点实验室开放课题(批准号:HZ2007-KF01)资助项目
  • 相关文献

参考文献17

  • 1Pitts W M, YangJ C, Huber M L, et al. Characterization and Identification of Super-effective Thermal Fire Extinguishing Agents-First Annual Report, NISTIR 6414. Gaithersburgh: National Institute of Standards and Technology, 2002
  • 2Liu Z G, Kim A K. Review of water mist fire suppression systems - Part I fundamental studies. J Fire Prot Eng, 2000, 10(3): 32--50
  • 3Adiga K C, Hatcher R F, Sheinson R S, et al. A computational and experimental study of ultra fine water mist as a total flooding agent. Fire Safety J, 2007, 42(2): 106--114
  • 4Coward H F, Jones G W. Limits of flammability of gases and vapors. Bull 503, US Bureau of Mines, 1952
  • 5Sapko M J, Furno A L, Kuchta J M. Quenching methane-air ignitions with water sprays. Report of Investigations RI-8214, US Department of Interior, 1977
  • 6Dlugogorski B Z, Aicheos R K, Kennedy E M. Water vapor as an inerting agent. In: Gann R G, Reneke P A, eds. Halon Option Technical Working Conference, NIST SP984. Albuquerque: National Institute of Standards and Technology, 1997. 7--18
  • 7Saito N S, Liao C H. Suppression Effect of Water Vapor on Flammability Limits of Hydrocarbon Fuels. 6th Asia-Oceania Symposium on Fire Science and Technology, 2004. 958--964
  • 8Linteris G T, Rumminger M, Babushok V. Final Report: Effective Non-toxic Metallic Fire Suppressants. National Institute of Standards and Technology, NISTIR 6875. Gaithersburgh: National Institute of Standards and Technology, 2002
  • 9Lazzarini A K, Krauss R H, Chelliah H K, et al. Extinction conditions of non-premixed flames with fine droplets of water and water/NaOH solutions, Proceedings of the Combustion Institute, 2000, 28(2): 2939--2945
  • 10Sheinson R S, Maranghides A. The cup burner as a suppression mechanism research tool: Results, interpretations, and implications. In: Gann R G, Reneke P A, eds. Halon Option Technical Working Conference, NIST SP984. Albuquerque: National Institute of Standards and Technology, 1997. 19--27

同被引文献24

  • 1钱众,伍键东.LNG储存工艺的火灾危险性分析[J].消防科学与技术,2006,25(4):527-529. 被引量:13
  • 2张村峰,霍然,李元洲.水喷淋对热烟气冷却效应的模拟计算[J].安全与环境学报,2006,6(4):99-103. 被引量:6
  • 3邹高万,谈和平,刘顺隆,周允基.船舶大空间舱室火灾烟气填充研究[J].哈尔滨工程大学学报,2007,28(6):616-620. 被引量:25
  • 4Palacios A,Munoz M,Casal J.Jet fires:an experimental study of the main geometrical features of the flame in subsonic and sonic regimes[J].Environmental and Energy Engineering,2008,55(1):256-263.
  • 5刘家荣.试论液化石油气火灾的扑救.消防科学与技术,1988,(4):38-40.
  • 6Hirst R,Booth K.Measurement of flame-extinguishing concentration[J].Fire Technology,1977,13:296-305.
  • 7ISO 14520-Part 1,Gaseous fire extinguishing systems-physical properties and system design-general requirements[S].
  • 8American Petroleum Institute Recommended Practice 521.Guide for pressure-relieving and depressuring systems[M].4th ed.Washington,DC:American Petroleum Institute,1997.
  • 9Cheatham Sally A,Oran Elaine S.An analysis of lift-off in laminar diffusion flames[R].Naval Research Lab,2001:NRL/MR/6410-01-8556.
  • 10Kiran D Y,Mishra D P.Experimental studies of flame stability and emission characteristics of simple LPG jet diffusion flame[J].Fuel,2007,(86):1545-1551.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部