摘要
本文研究了与年龄相关的带跳随机种群方程半隐式Euler方法的收敛性.运用Burkholder-Davis-Gundy不等式以及矫正条件,证明了半隐式Euler方法以1/2阶收敛.推广了文献[6,7]主要结果.
The main purpose of this paper is to considere the convergence of the semiimplicit Euler method for stochastic age-dependent population equations with Poisson jumps.It is proved that the semi-implicit Euler methods are convergent with strong order p=1/2 by means of the Burkholder-Davis-Gundy's theorem and the coercivity conditions.It extends the main results in[6,7].
出处
《生物数学学报》
CSCD
北大核心
2009年第1期120-128,共9页
Journal of Biomathematics
关键词
随机种群方程
半隐式EULER方法
POISSON跳
强收敛
Stochastic age-dependent population equations
Semi-implicit Euler method
Poisson jumps
Srong convergence