期刊文献+

概率强近邻在IMM中的应用 被引量:1

Interacting Multi-Model Algorithm Based on Probabilistic Data Association Filter
下载PDF
导出
摘要 目标的幅度信息在数据关联技术中起着很重要的作用,但传统的方法忽视了对这类信息的应用。提出了一种基于概率强近邻的相互作用多模型算法,有效地将幅度信息引入到数据关联中,完成对目标的精确跟踪。通过仿真,将它与传统的相互作用多模型概率数据关联等算法进行比较。仿真结果表明,该算法不仅具有很好的跟踪精度,而且其计算量也大大降低。 Amplitude information of target is very important for data association. However, traditional methods always ignore the application of this kind of information. A new approach named Interacting Multiple Models (IMM) algorithm was put forward based on Probabilistic Data Association Filter to introduce amplitude information into data association for tracking the target precisely. Simulations were conducted to compare it with traditional methods. The results proved that the algorithm present here has high tracking precision and greatly reduces the calculation cost.
作者 陆宇 冯新喜
出处 《电光与控制》 北大核心 2009年第6期69-71,76,共4页 Electronics Optics & Control
关键词 目标跟踪 数据关联 强近邻 概率强近邻 交互多模型 target tracking data association filter interacting multiple models strongest neighbor filter probabilistic strongest neighbor
  • 相关文献

参考文献9

  • 1LERRO D, BAR-SHALOM Y. Automated tracking formation with target amplitude information [ C ]//American Control Conf, 1990:233-240.
  • 2KIRUBARAJAN T,BAR-SHALOM Y. Low observable target motion analysis using amplitude information[ C ]//American Control Cortf, 1995:643-647.
  • 3吴伟,吴耀云,王东进.利用信号幅度信息的多基地雷达系统多目标跟踪算法[J].电子学报,2007,35(6):1193-1198. 被引量:5
  • 4LERRO D, BAR-SHALOM Y. Comparison of tracking /association methods for low SNR targets [ C ]//IEEE, 1992,1:443-448.
  • 5BAR-SHALOM Y, LI X R. Muhitarget muhisensor tracking: principles and techniques [ M ]. Storrs, CT: YBS Publishing, 1995.
  • 6徐本连,董学平,王执铨.基于SNF的一种检测和跟踪性能优化方法[J].火力与指挥控制,2006,31(8):11-14. 被引量:1
  • 7LI X R,ZHI X R. PSNF: A refined strong neighbor filter for tracking in clutter [ C]//Proceedings of 35^th IEEE Conference on Decision and Control Kobe, Japan, December 1996:2557-2562.
  • 8LI X R. Engineer's guide to variable-structure multiplemodel estimation for tracking [ C ]//BAR-SHALOM Y, BLAIR W D. Multitarget- Multisensor Tracking: Applications and Advances, Artech House, Boston ,2000:499-567.
  • 9KIRUBARAJAN T, BAR-SHALOM Y. IMMPDA for radar mangement and tracking benchmark with ECM [ J ]. IEEE Transactions on Aerospace and Electronics, 1998 : 1115- 1132.

二级参考文献18

  • 1王国涛,王东进,陈卫东.基于距离和信息的单目标精确跟踪[J].中国科学技术大学学报,2005,35(2):167-171. 被引量:10
  • 2何友,衣晓,关欣.基于串行处理的动态多维分配算法[J].西安电子科技大学学报,2005,32(3):489-493. 被引量:4
  • 3吴伟,王东进,陈卫东.基于动态多维分配的多基地雷达多目标跟踪算法[J].中国科学技术大学学报,2006,36(11):1143-1147. 被引量:5
  • 4Li X R.Tracking in Clutter with Strongest Neighbor Measurements-PartI:Theoretical Analysis[J].IEEE Trans.Auto.Control,1998,43(11):1560-1578.
  • 5Li X R,Bar-Shalom Y.Theoretical Analysis and Performance Prediction of Tracking in Clutter with Strongest Neighbor[A].Proceedings of the 34th Conference on Decision & Control[C].New Orleans,LA,1995,2758-2763.
  • 6Fortmann T E,Bar-shalom Y,Scheffe M,et al.Detection Thresholds for Tracking in Clutter-a Connection between Estimation and Signal Processing[J].IEEE Trans.Auto.Control,1985,AC(30):221-229.
  • 7Saul B G,Thomas E F,Bar-shalom Y.Adaptive Detection Threshold Optimization for Tracking in Clutter[J].IEEE Trans AES,1996,32(2):514-523.
  • 8Chang K C.Adaptive Detection Thresholds for Multitarget Tracking[A].Proc.Of the American Control Conference[C].Seattle,Washington.1996:633-637.
  • 9Li X R,Bar-Shalom Y.Tracking in Clutter with Nearest Neighbor Filters:Analysis and Performance[J].IEEE Trans AES,1996,32(3):995-1010.
  • 10H C Schau,A Z Robinson.Passive source localization employing intersecting spherical surfaces from time-of-arrival differences[ J ].Acoustics,Speech,and Signal Processing,IEEE Transactions on,1987,35(8):1223-1225.

共引文献4

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部