期刊文献+

基于邻接图的面向对象遥感图像分割算法 被引量:5

Object-oriented adjacency graph partition algorithm for remote sensing image segmentation
原文传递
导出
摘要 为解决高分辨率遥感图像自动化处理程度不高的问题,提出一种基于邻接图的面向对象遥感图像分割方法.综合利用遥感图像的光谱信息和区域形状信息进行图像分割,并采用了一种新的异质性度量准则.与经典软件eCogniton在QuickBird图像分割的效率和效果方面的对比分析表明,该算法在运算效率上较eCognition的多尺度分割方法可以提高近1倍. Automatically processing high-resolution remote sensing images is currently of regional and global research priority. This paper presented an algorithm based on adjacency graph partition for high-resolution remote sensing image segmentation. The proposed algorithm utilized both the region geometrical and spectral properties to evaluate the weight of the edges and the internal dissimilarity of the region. Comparing with the eCognition on image segmentation efficiency and effect, the proposed method can save half runtime in efficiency.
出处 《大连海事大学学报》 CAS CSCD 北大核心 2009年第2期81-83,共3页 Journal of Dalian Maritime University
基金 空间数据挖掘与信息共享教育部重点实验室(福州大学)开放基金资助项目(200805) 极地测绘科学国家测绘局重点实验室开放基金资助项目(200810)
关键词 邻接图 面向对象 图像分割 高分辨率遥感 adjacency graph object-oriented image segmentation high-resolution remote sensing
  • 相关文献

参考文献6

二级参考文献36

  • 1刘楠,舒宁.基于光谱空间密度分析的边缘提取[J].武汉大学学报(信息科学版),2004,29(12):1093-1096. 被引量:1
  • 2[1]Li S Z.Markov Random Field Modeling in Computer Vision[M].New York:Springer-Verlag,2001.
  • 3[2]Lee S,Crowford M M.Unsupervised Multistage Image Classification Using Hierarchical Clustering with a Bayesian Similarity Measure[J].IEEE Trans Image Process,2005,14(3):312-320.
  • 4[3]Udupa J K,Samarasekera S.Fuzzy Connectedness and Object Definition:Theory,Algorithm,and Applications in Image Segmentation[J].Graphical Model and Image Processing,1995,58(3):246-261.
  • 5[4]Geman S.Gemas D.Stochastic Relaxation,Gibbs Distributions,and the Bayesian Restoration of Images[J].IEEE Trans.Pattern Anal.Maching Intell.,1984 PAMI-6(6):721-741.
  • 6[5]F.Salzenstein and W Pieczynski,"Parameter Estimation in Hidden Fuzzy Markov Random Fields and Image Segmentation,"[J].Graphical Models and Image Processing,1997,59,(4):205-231.
  • 7[7]Deng H,David.Unsupervised Segmentation of Synthetie Aperture Radar Sea Ice Image Using a Novel Markov Random Field Model.[J].IEEE Trans.On Geography and Remote Sensing,2005.43(3):528-538.
  • 8[8]Richard O Duda,Peter E Hart,David G.Stork:Pattern Classification,Second Edifioncc[M],2005.
  • 9冈萨雷斯.数字图像处理(第2版)[M].北京:科学出版社,2003.60-127.
  • 10孙家抦,舒宁,关泽群.遥感原理方法和应用[M].北京:测绘出版社,1997

共引文献69

同被引文献41

引证文献5

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部