期刊文献+

求微分方程组反周期解的同伦方法

Homotopy Method for Antiperiodic Solutions of Differential Equations
下载PDF
导出
摘要 研究一阶微分方程组的反周期解问题.在一般条件下,应用大范围收敛的同伦方法证明了微分方程反周期解的存在性.数值算例表明该方法是有效的. This paper concerns the existence of antiperiodic solutions of first order ordinary differential equations. Under the commonly used condition in the literature, via the homotopy method, a global method for finding those solutions is proved. Numerical examples show this mthod is effective.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第3期403-408,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:J0630104)
关键词 反周期解 同伦方法 数值算例 antiperiodic solution homotopy method numerical example
  • 相关文献

参考文献9

  • 1Franco D,Nieto J J,O'Regan D.Anti-periodic Boundary Value Problem for Nonlinear First Order Ordinary Differential Equation[J].Math Ineq Appl,2003,6(3):477-485.
  • 2Aftabizadeh A R,Huang Y K,Pavel N H.Nonlinear Third-order Differential Equations with Anti-periodic Bounary Conditons and Some Opimal Control Problems[J].J Math Anal Appl,1995,192(1):266-293.
  • 3Aizicovici S,McKibben M,Reich S.Anti-periodic Solutions to Nonmonotone Evolution Equations with Discontinuous Nonlinearities[J].Nonlinear Anal,2001,43(2):233-251.
  • 4CHEN Yu-qing.Anti-periodic Solution for Semilinear Evolution Equations[J].J Math Anal Appl,2006,315(1):337-348.
  • 5Kellogg R B,Li T Y,Yorke J A.A Constructive Proof of the Brouwer Fixed Point Theorem and Computational Results[J].SIAM J Numer Anal,1976,13:473-483.
  • 6Smale S.A Convergent Process of Price Adjustment and Global Newton Methods[J].J Math Econ,1976,3(2):1-14.
  • 7LI Yong,LU Xian-rui.Continuation Theorems to Boundary Value Problems[J].J Math Anal Appl,1995,190(1):32-49.
  • 8LU Xi-guan,LI Yong,SU Yi.Finding Periodic Solutions of Ordinary Differential Equations via Homotopy Method[J].Appl Math Comput,1996,78(1):1-17.
  • 9王国铭,吕显瑞,黄庆道.Finding Periodic Solutions of Ordinary Differential Equations by the Homotopy Method[J].Northeastern Mathematical Journal,2004,20(3):369-378. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部