期刊文献+

有限群的p-幂零性的一个注记 被引量:3

On p-Nilpotence of Finite Groups
下载PDF
导出
摘要 推广了c-补,并给出有限群p-幂零性的一个新判别条件.设G是一个有限群,H是G的一个子群.如果存在G的一个子群K,使得G=HK,且H∩K≤H■,这里H■表示G的包含在H中的最大拟正规子群,则称K是H在G中的一个弱c-补,H在G中有一个弱c-补.证明了:设p是G的阶的最小素因子,P是G的一个Sylowp-子群,若P的每个2-极大子群在G中有弱c-补,且G与A4无涉,则G是p-幂零的. c-Supplement is generalized and weak c-supplement is introduced. Let G be a finite group and H a subgroup of G. H is called weakly c-supplemented in G if there exists a subgroup K of G such that G = HK and H∩K≤Hg, where Hg is the maximal quasinormal subgroup of G contained in H. K is called a weak c-supplement of H in G. It is shown that for the least prime divisor p of the order of a finite group G and for a Sylow p-subgroup P of G, if every 2-maximal subgroup of P is c-supplemented in G and if G is not involved with A4, then G is p-nilpotent.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第3期523-526,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10571181)
关键词 有限群 弱c-补 P-幂零 finite group weak c-supplement p-nilpotence
  • 相关文献

参考文献10

  • 1Kegel O H.Sylow-gruppen und Subnormalteiler Endlicher Gruppen[J].Math Z,1962,78:205-221.
  • 2WANG Yan-ming.c-Normality of Groups and Its Properties[J].J Algebra,1996,180(3):954-965.
  • 3WANG Yan-ming.Finite Groups with Some Subgroups of Sylow Subgroups c-Supplemented[J].J Algebra,2000,224(2):467-478.
  • 4Robinson D J S.A Course in the Theory of Groups[M].New York:Springer-Verlag,1993.
  • 5Deskins W E.On Quasinormal Subgroups of Finite Groups[J].Math Z,1963,82(2):125-132.
  • 6Maier R,Schmidt P.The Embedding of Quasinormal Subgroups in Finite Groups[J].Math Z,1973,131(3):269-272.
  • 7Carocca A,Maier R.Hypercentral Embedding and Pronormality[J].Arch Math,1998,71(6):433-436.
  • 8Huppert B.Endliche Gruppen[M].Berlin:Springer-Verlag,1967.
  • 9Guralnick R M.Subgroups of Prime Power Index in a Simple Group[J].J Algebra,1983,81(2):304-311.
  • 10Gross F.Conjugacy of Odd Order Hall Subgroups[J].Bull London Math Soc,1987,19(4):311-319.

同被引文献27

  • 1Hall P.A characteristic property of soluble groups[J].J London Math Soc,1937,12:188-200.
  • 2Wang Yanming.Finite group with some subgroups of sylow subgroups c-supplemented[J].J Algebra,2000,224:467-478.
  • 3Skiba N.On weakly s-permutable subgroups of finite groups[J].J Algebra,2007,315:192-209.
  • 4Huang Yujian,Li Yangming.On weakly s-supplemented subgroups of finite groups[J].Southeast Asian Bulletin of Mathematics,2009,33:443-450.
  • 5Guo Xiuyun,Shum K P.Gover-avoidance properties and structure of finite groups[J].J Pure and Applied Algebra,2003,181:297-308.
  • 6Guo Wenbin.The thoery of classes of groups[M].Beijing:Science Press-Kluwer Academic Publishers,2000.1-70.
  • 7Li Deyu,Guo Xiuyun.The influence of c-Normality of subgroups on the structure of finite groups[J].J Pure and Applied Algebra,2000,150:53-60.
  • 8Li Yangming,Wang Yanming,Wei Huaqun.The influence of π-quasinormality of some subgroups of a finite group[J].Arch Math,2003,81:245-252.
  • 9Guo xiuyun,Shum K P.On c-normal subgroups of finite groups[J].Publ Math Debrecen,2001,58(1):85-92.
  • 10Ballester-Bolinches A,Guo Xiuyun.On complemented subgroups of finite groups[J].Arch Math,1999,72:161-166.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部