期刊文献+

基于双层配置体系的产品配置算法研究 被引量:4

Product configuration solution based on double layer configuration system
下载PDF
导出
摘要 在大规模定制生产模式下,产品配置遇到了复杂模糊配置数据的处理问题,为此,提出了基于实例重用的产品配置模糊求解技术,设计了基于多目标遗传算法的产品配置优化算法。将产品配置过程划分为部件配置与零件配置两部分,利用典型条件概率解决产品配置领域的部件模糊配置问题,设计了基于非支配排序遗传算法-Ⅱ,求解以成本、时间和库存为优化目标的零件配置,并结合两者建立完整的产品配置求解算法体系。该算法有效地解决了复杂产品配置中模糊数据处理及配置组合爆炸的问题。 To deal with the complicated fuzzy solution problem of product configuration in the new mass customization environment, a fuzzy solution of product configuration based on case reuse was proposed, and a configuration optimization method based on multi-objective genetic algorithm was designed. Product configuration process was divided into two parts as subassemblies configuration and parts configuration. The typical conditional probability was used to solve the fuzzy problem of the subassemblies configuration. The Non-dominated Sorting Genetic Algorithm-Ⅱ(NSGA-Ⅱ ) was designed to solve the multi-objective optimization of the parts configuration with cost. time and inventory as three optimal objectives. In the end, this two configuration procedures were combined together into one complete solution system of product configuration. This new algorithm solved the fuzzy data processing and combi natorial explosion problem of complicated product configuration.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2009年第5期893-899,共7页 Computer Integrated Manufacturing Systems
基金 中国博士后科学基金资助项目(20080441130)~~
关键词 产品配置 模糊求解 多目标优化 条件概率 非支配排序遗传算法-Ⅱ product configuration fuzzy solution multi-objective optimization conditional probability non-dominated sorting genetic algorithm-Ⅱ
  • 相关文献

参考文献13

  • 1MCDERMOTT J.R1:a rule-based configurer of computer systems[J].Artificial Intelligence,1982,19(1):39-88.
  • 2BRUGNACH M,BOLTE J,BRADSHAW G A.Determining the significance of threshold values uncertainty in rule-based classification models[J].Ecological Modelling,2003,160(1/2):63-76.
  • 3MITTAL S,FRAYMAN F.Making partial choices in constraint reasoning problems[C]//Proceedings of the 6th National Conference on Artificial Intelligence.Menlo Park,Cal.,USA:AAAI Press,1987:631-636.
  • 4HOTZ L,KREBS T,WOLTER K.Using a structure-based configuration tool for product derivation[C]//Proceedings of the 19th InternationaI Conference on Automated Software Engineering.Washington,D.C.,USA:IEEE Computer Society,2004:388-391.
  • 5MITTAL S,FALKENHAINER B.nynamic constraint satisfaction Problems[C]//Proceeding of the 8th National Conference on Artificial Intelligence.Menlo Park,Cal.,USA:AAAI Press,1990:25-32.
  • 6SABIN D,FREUDER E.Configuration as composite constraint satisfaction[c]//Proceedings of Artificial Intelligence and Manufacturing Research Planning Workshop.Menlo Park,Cal.,USA:AAAI Press,1996:28-36.
  • 7FREUDER E.Constraint solving techniques[M]//MAYOH B,PENJAM J,TYUGU E K.Constraint Programming.Berlin,Germany:Springer-Vcrlag,1994,131:51-74.
  • 8HEINRICH M,JUNGST E W.A Resource-based paradigm for the configuring of technical systems from modular components[C]//Proceedings of the 7th IEEE Conference on Artificial Intelligence Applications.Washington,D.C.,USA:IEEE Computer Society,1991:257-264.
  • 9SOINNINEN T,TIIHONEN J,MANNISTO T,et al.Towards a general ontology of configuration[j].Artificial Intelligence for Engineering Design,1998,12(4):357-372.
  • 10SOININEN T,NIEMELAE I,TIIHONEN J,et al.Unified configuration knowledge representation using weight constraint rules[C]//Proceedings of ECAI-2000 Workshop on Configuration.Berkeley,Cal.,USA:ECAl,2000:79-84.

同被引文献41

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部