期刊文献+

悬臂楔形蜂窝构件静力计算方法 被引量:1

Static behavior of cantilever tapered castellated steel I-members
下载PDF
导出
摘要 为了节省钢材、提高构件的刚度和强度,在楔形构件和蜂窝梁的基础上提出了楔形蜂窝构件.通过对悬臂楔形蜂窝构件进行连续化处理,建立楔形蜂窝构件的微分方程,进一步推导出楔形蜂窝构件的刚度方程.考虑次弯矩对楔形蜂窝构件抗侧刚度的影响,引入二阶塑性铰简化分析方法,来计算悬臂楔形蜂窝构件的屈服后变形,与有限元方法计算结果比较.结果表明:悬臂楔形蜂窝构件计算方法比较准确,满足工程设计的需要. To increase the bending strength and stiffness of members, the tapered castellated members are presented, which have advantages of both tapered members and castellated members. After continuous treatment of cantilever tapered castellated members, the differential equations of them were derived, and then the stiffness equations were derived by approximate solution method of differential equations with the consideration of effects of the secondary moment on deformation of tapered castellated members. The refined plastic hinge analysis was used to calculate the plastic deformation of tapered castellated members. The results based on stiffness equations were compared with those of finite element analysis. They agree well with each other, which exhibits the applicability of the proposed method in engineering design.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第4期18-21,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(50538050,50808168) 黑龙江省教育厅科学技术研究项目(11521210)
关键词 楔形构件 蜂窝梁 刚度 强度 tapered member castellated beam stiffness strength
  • 相关文献

参考文献9

  • 1Mohebkhah Amin, Showkati Hossein. Bracing requirements for inelastic castellated beams [ J ]. Journal of Constructional Steel Research, 2005, 61 (10): 1373 - 1386.
  • 2童根树,严剑松.变截面梁对框架柱无侧移失稳时的约束[J].建筑钢结构进展,2005,7(2):27-30. 被引量:2
  • 3SAKA M P. Optimum design of steel frames with tapered members [ J]. Computers & structures. 1997, (4) :797 -811.
  • 4BRAFORD M A. Lateral stability of tapered beam - columns with elastic restraints [ J ]. The Struct. Engrg, 1988, 66(2): 376-384.
  • 5杨娜,沈世钊.变截面门式刚架结构的几何非线性性能研究[J].哈尔滨建筑大学学报,2001,34(3):10-15. 被引量:5
  • 6LI G Q, LI J J. A tapered Timoshenko--Euler beam element for analysis of steel portal frames[ J]. Journal of Constructional Steel Research, 2002, 58:1531 - 1544.
  • 7SRIMANI S L, QAS P K. Finite element analysis of castellated beams [ J ]. Computer and Structures, 1978, (9) :169 - 170.
  • 8REDWOOD R G, DEMIRDJIAN S. Castellated beam web buckling in shear[ J ]. Journal of Structural Engineering, 1998, (10) :1202 - 1207.
  • 9贾连光,徐晓霞,康小柱.蜂窝梁抗弯承载力的有限元分析[J].沈阳建筑大学学报(自然科学版),2005,21(3):196-199. 被引量:22

二级参考文献26

  • 1何一民,肖营.长春滑冰馆蜂窝三铰拱的结构设计[J].工业建筑,1994,24(8):16-19. 被引量:9
  • 2苏益声.圆孔蜂窝梁验算截面的确定及梁桥高度取值分析[J].红水河,1994,13(2):39-43. 被引量:5
  • 3王文明.变截面轻型门式刚架结构体系的稳定研究[M].清华大学,1998,3..
  • 4谭巍 牟宗磊.轻型钢结构体系最优柱距研究[J].建筑钢结构进展,1999,(1):16-21.
  • 5杨娜.轻型钢结构门式刚架的设计与应用[M].哈尔滨:哈尔滨工业大学,1998..
  • 6谢贻权 何福保.弹性和塑性力学中的有限单元法[M].机械工业出版社,1986..
  • 7张群.空间结构大位移、大转动及稳定分析[M].北京:清华大学,1986..
  • 8陈昕.空间网格结构全过程分析及单层鞍形网壳的稳定性[M].哈尔滨:哈尔滨建筑工程学院,1990..
  • 9谭巍,建筑钢结构进展,1999年,1期,16页
  • 10王文明,学位论文,1998年

共引文献24

同被引文献15

  • 1苏益声,王良才.圆孔蜂窝梁及其强度计算[J].广西大学学报(自然科学版),1993,18(3):63-69. 被引量:21
  • 2周朝阳,郑坤龙,李明.成排侧开圆孔受弯构件的应力简化和刚度等效[J].中南大学学报(自然科学版),2005,36(6):1089-1093. 被引量:11
  • 3王平.蜂窝梁挠度的简化计算[J].四川建筑科学研究,2006,32(3):29-31. 被引量:7
  • 4杨永华,陈以一.连续开孔梁的抗弯刚度和挠度的等效计算[J].结构工程师,2006,22(3):33-35. 被引量:9
  • 5Knowles P R. Castellated beams[J].Proceedings of the Institution of Civil Engineers,1991,(01):521-536.
  • 6Benssousan A,Lions J L,Papanicoulau G. Asymptotic Analysis for Periodic Structures[M].Amsterdam:North-Holland Publishing Co,1978.
  • 7Gudies J M,Kikuchi N. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods[J].Computer Methods in Applied Mechanics and Engineering,1990,(02):143-198.
  • 8Hassani B,Hinton E. A review of homogenization and topology optimization i-homogenization theory for media with periodic structure[J].Computers & Structures,1998,(06):707-717.
  • 9Okada H,Fukui Y,Kumazawa N. Homogenization method for heterogeneous material based on boundary element method[J].Computers & Structures,2001,(20-21):1978-2007.
  • 10Timoshenko S P. On the correction for shear of the differential equation for transverse vibration of prismatic bars[J].Philosophical Magazine,1921,(41):744-746.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部