期刊文献+

随机利率下的一类特殊年金 被引量:3

Some Special Patterns of Annuities under Random Rates of Interest
原文传递
导出
摘要 研究在随机利率相互独立条件下的某些延付年金的积累值的计算问题,目的在于研究积累值的期望和方差.研究了在随机利率相互独立条件下的期末付虹式年金,期末付平顶虹式年金,期末付倒虹式年金和期末付倒平顶虹式年金的积累值的期望和方差,并且给出了积累值的期望和方差的计算公式. We consider the calculation of accumulated value of some annuities over a period of years in which the rate of interest is a random variable under some restrictions and aim at the expected value and variance of the accumulated value. In this paper, some special patterns of annuity changes whose payments are of the flatheaded rainbow, the rainbow, the reverse flatheaded rainbow and of the reverse rainbow, and formulas for the expected value and variance of the accumulated value are given.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第10期26-31,共6页 Mathematics in Practice and Theory
关键词 随机利率 虹式 平顶 年金 积累值 random rates of interest rainbow flatheaded annuities accumulated value
  • 相关文献

参考文献8

二级参考文献17

  • 1欧阳资生,鄢茵.随机利率下增额寿险现值函数矩的一些结果[J].经济数学,2003,20(1):41-47. 被引量:7
  • 2何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 3Airchison J,Brown J A C. The lognormal distribution[M]. Cambridge University Press,1963:8.
  • 4Dufrene D. The distribution of a perpetuity with application to risk theory and pension funding[J]. Scand.Actuarial Journal,1990:39~79.
  • 5Park G. Stochastic analysis of the interaction between investment and insurance risks[J]. North American Actuarial Journal,1997,12:55~84.
  • 6Two stochastrc approaches for disconting actuarial fuwction[J]. Aitin Bulletin,1996,26(1):167~181.
  • 7John A Beekman,Clinton P Fuelling.Extra randomness in certain annuity models[J].Insurance:Mathematics and Economics,1991,10:275-287.
  • 8A De Schepper,F De Vylder,M Goovaerts,R Kaas.Interest randomness in annuities certain[J].Insurance:Mathematics and Economics,1992,11:271-281.
  • 9A De Schepper,M Goovaerts.Some further results on annuities certain with random interest[J].Insurance:Mathematics and Economics,1992,11:283-290.
  • 10A De Schepper,M Goovaerts,F Delbaen.The Laplace transform of annuities certain with exponential time distribution[J].Insurance:Mathematics and Economics,1992,11:291-294.

共引文献17

同被引文献15

  • 1王丽燕,杨德礼.一类随机利率下的确定年金[J].数学的实践与认识,2005,35(12):7-12. 被引量:12
  • 2Zaks A. Annuities under random rates of interest [J].Insurance: Mathematics and Economics, 2001, 28:1-11.
  • 3Krzysztof Burnecki, Agnieszka Marciniuk, Aleksander Weron. Annuities under random rates of in- terest-revisited[J]. Insurance: Mathematics & Economics, 2003 (3) : 457-460.
  • 4John A BECKMAN, Clinton P FUELLING. Extra random-ness in certain annuity models [J]. Insurance: Mathematics and Economics, 1991, 10(2): 275-287.
  • 5David PERRY, Wolfgang STADJE. Function space integra- tion for annuities[J]. Insurance: Mathematics and Econom- ics, 2001, 29(1): 73-82.
  • 6A ZAKS. Annuities under random rates of interest [J]. Insur- ance: Mathematics and Economics, 2001, 28(1) : 1-11.
  • 7E W FREES. Stochastic life contingencies with solvency con- siderations[J]. Transaction of Societies of Actuaries, 1990, 42(10) : 91-104.
  • 8Beckman,Fuelling,C.P..Extra randomness in certainannuity models[J].Insurance:Mathematics and Eco-nomics,1991,10(2):275-287.
  • 9David Perry,Wolfgang Stadje.Function space integra-tion for annuities[J].Insurance:Mathematics and Eco-nomics,2001,29(1):73-82.
  • 10Zaks A.Annuities under random rates of interest[J].Insur-ance:Mathematics and Economics,2001,28(1):1-11.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部