期刊文献+

改进PSO-BP网络在温室数据融合中的应用研究 被引量:2

Application of neural network based on improved PSO in data fusion of greenhouse temperature
下载PDF
导出
摘要 由于温室环境受到各种因素影响,导致分布在各点的温度值不均匀,为了获得温度的准确值,提出了基于改进PSO的神经网络对其进行数据融合,并且采用分布图法剔除多传感器离异数据,最终得到准确有效的数据,为温室管理提供了精确的信息。仿真结果表明,采用这种方法可以提高温度采集的准确性,并且有效地消除了由于传感器失效引起的误差。 The temperature distribution in the greenhouse influenced by many kinds of environmental factors is uneven.In order to get precise data,the neural network based on improved PSO is proposed for greenhouse data fusion,and the distributing diagram approach is used to eliminate the careless mistake data.Data fusion technology gets efficient data,providing precise information for greenhouse's management.The results show that the precision of the collected data is improved and the careless error caused by disabled sensors is eliminated effectively.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第17期218-220,共3页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)(No.2006AA10Z335)~~
关键词 温室温度 粒子群优化算法 传感器 数据融合 greenhouse temperature Particle Swarm Optimization(PSO) sensor data fusion
  • 相关文献

参考文献3

二级参考文献12

共引文献89

同被引文献27

  • 1张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 2Hall D L, Llinas J. An introduction to multisensor data fusion [ J]. Proceedings of the IEEE, 1997, 85 (1) :6 -20.
  • 3Varshney P K. Multisensor data fusion[J]. Electronics & Communication Engineering Journal, 1997,9(6) :245 - 253.
  • 4Qi H R, Wang X L, Iyengar S S, et al. Multisensor data fusion in distributed sensor networks using mobile agents[ C]//Informa- tion Fusion. Montreal: Proceedings of International Conference, 2001 : 11 - 16.
  • 5Iswandy K, K~nig A. Methodology, algorithms, and emerging tool for automated design of intelligent integrated multi -sensor sys- tems [J]. Algorithms,2009,2(4) -1 368 -1 409.
  • 6Larkin M J. Sensor fusion and classification of acoustic signals using bayesian networks [ C ]//Signals, Systems & Computers. Fishpond: Conference Record of the 31st Asilomar Conference, 1998:1 359 -1 362.
  • 7Yager R R. On the dempster shafer framework and new combination rules [ J ]. Information Sciences, 1987, 41 (2) :93 - 137.
  • 8Zhang L Y, Li D, Zhang L, et al. A weighted fusion algorithm of multi - sensor based on optimized grouping [ C ~//Intelligent Control and Automation. Dalian: The Sixth World Congress, 2006:5 350- 5 353.
  • 9Bardwaj A A, Anandaraj M, Kapil K, et al. Multi sensor data fusion methods using sensor data compression and estimated weights [ C ]//Signal Processing, Communications and Networking. Chennai : ICSCN' 08 International Conference, 2008 : 250 - 254.
  • 10Kennedy J,Eberhart R C. Particle swarm optimization[ C]//Neural Networks. Piscataway: Proceedings of the IEEE International Conference, 1995 : 1 942 - 1 948.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部