摘要
给出E-凸集上函数的半连续性与E-拟凸性之间的关系:M是Rn中的非空E-凸集,E(M)是凸集,f是M上的上半连续(或下半连续)实值函数,那么f是M上的E-拟凸函数当且仅当存在α∈(0,1),使得f(αE(x)+(1-α)E(y))≤max{f(E(x)),f(E(y))},x,y∈M.
In this paper, we show semi-continuity and E-quasiconvexity of functions on E-convex set. We prove the following result: let M be a nonempty E-convex set of R^n, E(M) be a convex set,f be an upper(or a lower) semi-continuous function on M, then f is a E-quasiconvex function on M if and only if there exists a∈(0,1),such that f(aE(x)+(1-a)E(y))≤max{f(E(x)),f(E(y))},∨x,y∈M.
出处
《广东教育学院学报》
2009年第3期48-51,共4页
Journal of Guangdong Education Institute