期刊文献+

电磁固体非均匀载荷作用下的裂纹分析 被引量:1

ANALYSIS OF CRACKS UNDER NON-UNIFORMLY APPLIED LOADINGS IN MAGNETOELECTROELASTIC MEDIA
下载PDF
导出
摘要 根据广义Crouch基本解和广义不连续位移边界元方法,研究电磁固体中的裂纹在非均匀载荷下的广义应力强度因子和裂纹腔内的电位移和磁感应强度,以及电磁均不可穿透和电磁均可穿透边界条件对解的影响。以线性分布的力载荷为例,给出三维电磁固体方形裂纹问题的解。运用迭代方法,求解在非均匀载荷作用下裂纹张开模型的解。作为特例,给出抛物线型载荷作用下二维裂纹问题的数值解。 Based on the extended Crouch fundamental solution and the extended displacement discontinuity boundary element method (EDDBEM), the extended stress intensity factors, the electric displacement and the magnetic induction in crack cavity are calculated in a magnetoelectroelastic medium under non-uniformly distributed loadings on crack faces. The effects of electrically and magnetically impermeable and permeable boundary conditions on solution are studied. As an example, a square crack in a 3D magnetoelectroelastic solid under linearly distributed mechanical loading is analyzed under different electrical and magnetic boundary conditions. Considering crack opening under applied loadings and the electric and magnetic fields in crack cavity, the problem is typically non-liner. An iterative approach is adopted to obtain the numerical solution. Simultaneously, the extended intensity factors of cracks in 2D magnetoelectroelastic media under quadric distributed loading are calculated for electrically and magnetically impermeable and permeable boundary conditions.
出处 《机械强度》 CAS CSCD 北大核心 2009年第3期470-474,共5页 Journal of Mechanical Strength
基金 国家自然科学基金(10572131) 河南省高校新世纪优秀人才支持计划(HANCET)资助~~
关键词 电磁固体 非均匀载荷 裂纹 强度因子 广义不连续位移 边界元方法 Magnetoelectroelastic solid Non-uniformly distributed loading Crack Intensity factor Extended displacement discontinuity Boundary element method
  • 相关文献

参考文献1

二级参考文献24

  • 1孙建亮,周振功,王彪.功能梯度压电压磁材料中断裂问题分析[J].力学学报,2005,37(1):9-14. 被引量:23
  • 2Davis PM.Piezomagnetic computation of magneticanomalies due to ground losding by a man-made lake.Pure and Applied Geophysics,1974,112(5):811-819
  • 3Vandenboomgaard J,Vanrun AMJG,Vansuchtelen J.Magnetoelectricity in piezoelectric-magnetostrictive composites.Fcrroelectrics,1976,10(1-4):295-298
  • 4Vanderhoeven CJ,Vanoorschot BPJ,Meffert P.Distortion of piezoelectric transducers.Journal of Physics E-Scientific Instruments,1976,9(12):1053-1054
  • 5Tian WY,Gabbert U.Parallel crack near the interface of magnetoelectroelastic bimaterials.Computational Materials Science,2005,32(3-4):562-567
  • 6Sih GC,Jones R,Song ZF.Piezomagnetic and piezoelectric poling effects on mode Ⅰ and Ⅱ crack initiation behavior of magnetoelectroelastic materials.Theoretwal and Applied Fracture Mechanzcs,2003,40(2):161-186
  • 7Sih GC,Song ZF.Magnetic and electric poling effects associated with crack growth in BaTiO3-CoFe2O4 composite.Theoretwal and Applied Fracture Mechanics,2003,39(3):209-227
  • 8Feng WJ,Xue Y,Zou ZZ.Crack growth of an interface crack between two dissimilar magneto-electro-elastic materials under anti-plane mechanical and in-plane electric magnetic impact.Theoretical and Applied Fracture Mechanics,2005,43(3):376-394
  • 9Li R,Kardomateas GA.The mode Ⅲ interface crack in piezo-electro-magneto-elastic dissimilar bimaterials.Journal of Applied Mechanics-Transacttons of the ASME,2006,73(2):220-227
  • 10Soh AK,Liu JX.Mode Ⅲ interfacial edge crack in a magnetoelectroelastic bimaterial.Pts 1 and 2.Advances in Fracture and Failure Prevention,2004,261-263:393-398

共引文献2

同被引文献21

  • 1Wu T L, Huang J H. Closed-form solutions for the magnetoelectriccoupling coefficients in fibrous composites with piezoelectric andpiezomagnetic phases [ J ]. International Journal of Solids anaStructures, 2000,37: 2981-3009.
  • 2Huang J H , Kuo W S. The analysis of piezoelectric/ piezomagneticComposite materials containing ellipsoidal inclusions [ J]. Journal ofApplied Physics, 1997,81 : 4889-4898.
  • 3Huang J L,Liu K H,Dai W L. The optimized fiber volume fractionfor magnetoelectric coupling effect in piezoelectric-piezomagneticcontinuous fiber reinforced composites [ J]. International Journal ofEngineering Science, 2000 , 38: 1207-1217.
  • 4Li J Y. Magnetoelectroelastic mutli-inclusion and inhomogeneityproblems and their applications in composite materials [ J ].International Journal of Engineering Science, 2000,38: 1993-2011.
  • 5Liu J X, Liu X G, Zhao Y B. Green’ s function for anisotropicmagnetoelectroelastic solids with an elliptical cavity or a crack [ J].International Journal of Engineering Science, 2001,39: 1405-1418.
  • 6Wang X,Shen Y P. The general solution of three-dimensionalproblems in magneto-electroelastic media [ J ]. International Journalof Engineering Science , 2002,40: 1069-1080.
  • 7Wang X, Shen Y P. Inclusions of arbitrary shape inmagnetoelectroelastic composite materials [ J]. International Journalof Engineering Science, 2003 , 41 : 85-102.
  • 8Jiang X,Pan E. Exact solution for 2D polygonal inclusion problemin anisotropic magneto-eletroelastic full-,half- and bimaterial-planes [ J] . International Journal Solids and Structures,2004,41 :4361-4382.
  • 9Li G, Wang B L, Han J C. Exact solution for elliptical inclusion inmagnetoelectroelastic materials [ J ]. International Journal of Solidsand Structures, 2010 , 47(3-4) : 419-426.
  • 10Gao C F, Kessler H, Balke H. Crack problems inmagnetoelectroelastic solids. Part I: exact solution of a crack [J].International Journal of Engineering Science, 2003,41 : 969-981.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部