摘要
根据广义Crouch基本解和广义不连续位移边界元方法,研究电磁固体中的裂纹在非均匀载荷下的广义应力强度因子和裂纹腔内的电位移和磁感应强度,以及电磁均不可穿透和电磁均可穿透边界条件对解的影响。以线性分布的力载荷为例,给出三维电磁固体方形裂纹问题的解。运用迭代方法,求解在非均匀载荷作用下裂纹张开模型的解。作为特例,给出抛物线型载荷作用下二维裂纹问题的数值解。
Based on the extended Crouch fundamental solution and the extended displacement discontinuity boundary element method (EDDBEM), the extended stress intensity factors, the electric displacement and the magnetic induction in crack cavity are calculated in a magnetoelectroelastic medium under non-uniformly distributed loadings on crack faces. The effects of electrically and magnetically impermeable and permeable boundary conditions on solution are studied. As an example, a square crack in a 3D magnetoelectroelastic solid under linearly distributed mechanical loading is analyzed under different electrical and magnetic boundary conditions. Considering crack opening under applied loadings and the electric and magnetic fields in crack cavity, the problem is typically non-liner. An iterative approach is adopted to obtain the numerical solution. Simultaneously, the extended intensity factors of cracks in 2D magnetoelectroelastic media under quadric distributed loading are calculated for electrically and magnetically impermeable and permeable boundary conditions.
出处
《机械强度》
CAS
CSCD
北大核心
2009年第3期470-474,共5页
Journal of Mechanical Strength
基金
国家自然科学基金(10572131)
河南省高校新世纪优秀人才支持计划(HANCET)资助~~
关键词
电磁固体
非均匀载荷
裂纹
强度因子
广义不连续位移
边界元方法
Magnetoelectroelastic solid
Non-uniformly distributed loading
Crack
Intensity factor
Extended displacement discontinuity
Boundary element method