期刊文献+

改进的用于求解变分不等式的邻近点分裂算法(英文)

A MODIFIED PROXIMAL-BASED DECOMPOSITION METHOD FOR VARIATIONAL INEQUALITIES
下载PDF
导出
摘要 本文在Chen和Teboulle于1994年提出的邻近点分裂算法的基础上提出了两类求解变分不等式的预测-校正算法,并且证明了在一定条件下,两类算法均具有全局收敛性.从理论上证明了,第二类算法每次迭代所产生的新的迭代点与解点的距离的下界大于第一类算法,从而说明了第二类算法优于第一类算法. Based on the proximal-based decomposition (PBD) method proposed by Chen and Teboulle [Math. Progr. 64(1994), pp.81-101], in this paper we propose two prediction-correction methods for solving variational inequalities. Under certain conditions, the global convergence of both methods is proved. It is proved theoretically that the lower-bound of the progress obtained by the second method is greater than that by the first one.
作者 陶敏
出处 《南京大学学报(数学半年刊)》 CAS 2009年第1期14-26,共13页 Journal of Nanjing University(Mathematical Biquarterly)
关键词 单调变分不等式 邻近点算法 预测校正方法 monotone variational inequality, approximate proximal point algorithm, prediction correction method
  • 相关文献

参考文献12

  • 1Arrow K J,Hurwicz L and Uzawa L.Studies in Linear and Nonlinear Programming.Stanford University Press,1985.
  • 2Bertsekas D P and Cafni E M.Projection Method for Variational Inequalities with Applications to the Traffic Assignment Problem.Mathematical Programming Study,1982,17:139-159.
  • 3Bertsekas D P and Tsitsiklis J N.Parallel and Distributed Computation.Numerical Methods,Prentice-Hall,Englewood Cliffs,N J,1989.
  • 4Chen G and Tebonlle M.Approximal-based Decomposition Method for Convex Minimization Problems.Math.Programming,1994,64:81-101.
  • 5Fukushima M.Application of the Alternating Directions Method of Multipliers to Separable Convex Programming Problems.Computational Optimization and Applications,1992,2:93-111.
  • 6He B S and Xu M H.A General Framework of Contraction Methods for Monotone Variational Inequalities.Pacific Journal of Optimization,2008,4:195-212.
  • 7Nagurney A and Zhang D.Projected Dynamical Systems and Variational Inequalities and Network Equilibrium Problems.Information Systems and Operational Research,1984,29:258-270.
  • 8Nagurney A.Network Economics,a Variational Inequality Approach.Kluwer Academics Publishers,Dordrecht,1993.
  • 9Nagurney A and Ramanujam P.Transportation Network Policy Modeling with Goal Targets and Generalized Penalty Functions.Transportation Science,1996,30:3-13.
  • 10Slowinski R.Numerical Methods for Nonlinear Variational Problems.Springer-Verlag,New York,Berlin,Heidelberg,Tokyo,1984.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部