摘要
设a,b是给定且不相等的正整数.我们研究了联立Pell方程组x^2-ay^2=1,y^2-bz^2=1的正整数解(x,y,z)的个数.本文运用Bennett关于联立Padé逼近的一个结果和对数线性型的下界估计,证明了当a=2时,该方程组至多有1组正整数解(x,y,z).
Let a and b be positive integers. In this paper, we study the number of positive integers solutions (x, y, z) of the simultaneous Diophantine equations x^2-ay^2=1,y^2-bz^2=1.It is proved that if a = 2, the above equations possesses at most one positive integer solution (x, y, z) . This result follows from a combination of the techniques including simultaneous Padé approximation to binomial functions, the theory of linear forms in three logarithms of algebraic numbers and computational Diophantine approximations.
出处
《南京大学学报(数学半年刊)》
CAS
2009年第1期76-84,共9页
Journal of Nanjing University(Mathematical Biquarterly)
关键词
联立PELL方程组
对数线性型
解数
Simultaneous Pell equations, liner form of logarithms, number of solutions