期刊文献+

关于Pell方程组x^2-2y^2=Y^2-bz^2=1的解数 被引量:9

ON THE NUMBER OF SOLUTIONS OF SIMULTANEOUS PELL EQUATIONS x^2-2y^2=y^2-bz^2=1
下载PDF
导出
摘要 设a,b是给定且不相等的正整数.我们研究了联立Pell方程组x^2-ay^2=1,y^2-bz^2=1的正整数解(x,y,z)的个数.本文运用Bennett关于联立Padé逼近的一个结果和对数线性型的下界估计,证明了当a=2时,该方程组至多有1组正整数解(x,y,z). Let a and b be positive integers. In this paper, we study the number of positive integers solutions (x, y, z) of the simultaneous Diophantine equations x^2-ay^2=1,y^2-bz^2=1.It is proved that if a = 2, the above equations possesses at most one positive integer solution (x, y, z) . This result follows from a combination of the techniques including simultaneous Padé approximation to binomial functions, the theory of linear forms in three logarithms of algebraic numbers and computational Diophantine approximations.
出处 《南京大学学报(数学半年刊)》 CAS 2009年第1期76-84,共9页 Journal of Nanjing University(Mathematical Biquarterly)
关键词 联立PELL方程组 对数线性型 解数 Simultaneous Pell equations, liner form of logarithms, number of solutions
  • 相关文献

参考文献11

  • 1Ljunggren W.Litt om Simultane Pellske Ligninger.Norsk Mat.Tidsskr.,1941,23:132-138.
  • 2Mohanty S P and Ramasamy A M S.The Simultaneous Diophantine Equations 5y^2-20 = x^2 and 2y^2 + 1 = z^2.J.Number Theory,1984,18:356-359.
  • 3Baker A and Davenport H.The Equations 3x^2-2 = y^2 and 8x^2-7 = z^2.Quart.J.Math.Oxford Ser.(2),1969,20:129-137.
  • 4Bennett M A.On the Number of Solutions of Simultaneous Pell Equations.J.Reine Angew.Math.,1998,498:173-199.
  • 5Cipu M and Mignotte M.On the Number of Solutions of Simultaneous Hyperbolic Diophantine Equations.J.Number Theory,2007,125:356-392.
  • 6何波.联立Pell方程组x^2-ay^2=1和y^2-bz^2=1的解数[J].数学学报(中文版),2008,51(4):721-726. 被引量:13
  • 7Yuan P Z.On the Number of Solutions of x^2-4m(m + 1)y^2 = y^2-bz^2 = 1.Amer.Math.Soc.,2004,132:1561-1566.
  • 8Ribenboim P and McDaniel W L.The Square Terms in Lucas Sequences.J.Number Theory,1996,61:014-123.
  • 9Walker D T.On the Diophantine Equation mX^2-nY^2 = ±1.Amer.Math.Monthly,1967,74:504-513.
  • 10Baker A and Wustholz G.Logarithmic forms and Group Varieties.J.Reine Angew.Math.,993,442:19-62.

二级参考文献1

共引文献12

同被引文献26

引证文献9

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部