期刊文献+

A direct proof of uniqueness of square-root of a positive semi-definite tensor

A direct proof of uniqueness of square-root of a positive semi-definite tensor
下载PDF
导出
摘要 Understanding of the basic properties of the positive semi-definite tensor is a prerequisite for its extensive applications in theoretical and practical fields, especially for its square-root. Uniqueness of the square-root of a positive semi-definite tensor is proven in this paper without resorting to the notion of eigenvalues, eigenvectors and the spectral decomposition of the second-order symmetric tensor. Understanding of the basic properties of the positive semi-definite tensor is a prerequisite for its extensive applications in theoretical and practical fields, especially for its square-root. Uniqueness of the square-root of a positive semi-definite tensor is proven in this paper without resorting to the notion of eigenvalues, eigenvectors and the spectral decomposition of the second-order symmetric tensor.
作者 邵玥 吕存景
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第6期713-716,共4页 应用数学和力学(英文版)
关键词 positive semi-definite tensor second-order tensor UNIQUENESS decomposi-tion positive semi-definite tensor, second-order tensor, uniqueness, decomposi-tion
  • 相关文献

参考文献7

  • 1C.S. Jog.On the Explicit Determination of the Polar Decomposition in n-Dimensional Vector Spaces[J].Journal of Elasticity.2002(2)
  • 2Q.-C. He.A Direct Proof of the Uniqueness of the Square-Root of a Positive-Definite Tensor[J].Journal of Elasticity.1997(3)
  • 3.On the uniqueness of the square-root of a symmetric, positive-definite tensor[J].Journal of Elasticity.1980(2)
  • 4Husler, O.,Schick, D.,Tsakmakis, Ch.Description of plastic anisotropy effects at large deforma- tions. Part II: the case of transverse isotropy[].International Journal of Plasticity.2002
  • 5Ehret, A. E.,Itskov, M.Modeling of anisotropic softening phenomena: application to soft biological tissues[].International Journal of Plasticity.2008
  • 6Schrder, J.,Neff, P.,Ebbing, V.Anisotropic polyconvex energies on the basis of crystallo- graphic motivated structural tensors[].Journal of the Mechanics and Physics of Solids.2008
  • 7Garikipati,K,Arruda,EM,Grosh,K,Narayanan,H,Calve,S.A?continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics[].J?Mech Phys Solids.2004

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部