期刊文献+

非线性估计中无味滤波(UKF)与扩展卡尔曼滤波(EKF)之比较研究 被引量:5

Comparison between Unscented Kalman Filter and Extended Kalman Filter method in Nonlinear Estimation
下载PDF
导出
摘要 作为传统非线性估计方法的代表,扩展卡尔曼滤波(EKF)存在明显的缺陷。对于强非线性系统,无味滤波(UKF)由于选用有限个采样点获取系统的近似分布,并无需计算量测方程的Jacobian矩阵,显示出对非线性系统估计的优越性。本文选用了一个应用于航天器相对导航中的非线性估计的例子进行仿真,仿真表明UKF的滤波精度要优于EKF。 As a typical nonlinear estimation method , extended kalman filter (EKF)has its defects. Compared with EKF, Unscented kalman filter (UKF) can achieve better filtering result for nonlinear system. In this paper, a simulation example based on spacecraft relative navigation is presented, and the simulation results demonstrate that the precision of UKF is higher than EKF.
作者 周曜
出处 《宜春学院学报》 2009年第2期52-54,共3页 Journal of Yichun University
关键词 非线性估计 UKF EKF nonlinear estimation unsented kalman filter extended kalrnan filter
  • 相关文献

参考文献5

  • 1柴霖,袁建平,罗建军,方群,岳晓奎.非线性估计理论的最新进展[J].宇航学报,2005,26(3):380-384. 被引量:35
  • 2张红梅,邓正隆,林玉荣.一种基于模型误差预测的UKF方法[J].航空学报,2004,25(6):598-601. 被引量:23
  • 3William F.Leven,Aaron D.Lanterman.Multiple Target Tracking with Symmetric Measurement Equations using Unscented Kalman and Particle Filters[J].IEEE,2004:155-199
  • 4Yuanxin Wu,wen Hu,Meiping Wu,Xiaoping Hu.DeUnscented Kalman Filter for Additive Noise Case:Augmented versus Nonaugmented[J].IEEE,2005:357-360
  • 5Immanuel Ashokaraj,Antonios Tsourdos,Peter Silson,et al.A fuzzy logic approach in feature based robot navigation using interval analysis and UKF[J].IEEE,2004:808-813

二级参考文献19

  • 1ZhangHongmei DengZhenglong.UKF-based attitude determination method for gyroless satellite[J].Journal of Systems Engineering and Electronics,2004,15(2):105-109. 被引量:7
  • 2张红梅,邓正隆,林玉荣.一种基于模型误差预测的UKF方法[J].航空学报,2004,25(6):598-601. 被引量:23
  • 3张友民,戴冠中,张洪才.卡尔曼滤波计算方法研究进展[J].控制理论与应用,1995,12(5):529-538. 被引量:45
  • 4Julier S, Uhlmann J K. A general method for approximating nonlinear transformations of probability distributions[R]. RRG, Dept of Engineering Science, University of Oxford, 1996. [O L]. http://www.robots.ox.ac.uk/-siju/
  • 5Julier S, Uhlmann J K. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Trans A C, 2000, 45(3): 477-482.
  • 6Crassidis J L, Markley F L. Predictive filtering for nonlinear systems[J].Journal of Guidance, Control and Dynamics, 1997, 20(3):566-572.
  • 7Farina A, Ristic B, Benvenuti D. Tracking a ballistic target:comparison of several nonlinear filters[ J]. IEEE Trans on Aerospace and Electronic Systems, 2002, 38(3): 854 - 867.
  • 8Chai L, Yuan J P, Fang Q, et al. Neural network aided adaptive kalman filter for multi-sensors integrated navigation [ J ]. Lecture Notes in Computer Science, Springer-Verlag, 2004, 3174:381 -386.
  • 9Nφrgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear system [ J ]. Automatica, 2000, 36 ( 11 ):1627 - 1638.
  • 10Schei T S. A finite difference method for linearization in nonlinear eatimation algorithms[J]. Automatica, 1997, 33(11): 2051 - 2058.

共引文献55

同被引文献31

  • 1邓自立,崔崇信.多传感器全局最优观测融合白噪声反卷积滤波器[J].科学技术与工程,2005,5(5):267-270. 被引量:6
  • 2贾文静,张鹏,邓自立.辨识动态系统噪声方差Q和R的新方法[J].科学技术与工程,2006,6(14):2008-2011. 被引量:7
  • 3陈传璋,金福临,胡家赣.数学分析[M].上海:上海科学技术出版社,1962.
  • 4湛浩吴.煤矿井下移动目标定位系统设计[D].哈尔滨:哈尔滨工业大学,2007.
  • 5武凤德,李风山.高精度惯性导航基础[M].北京:国防工业出版社,2002.
  • 6JULIER S J, UHLMANN J K, DURRAT-WHYTE H F. A new approach for filtering nonlinear systems f-C-]//American Control Conference, Seattle, 1995: 1628-1632.
  • 7JULIER S, UHLMANN J, DURRANT-WHYTE H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3) :477-482.
  • 8Ljung L.System Identification Theory for the User[J].Second Edition.Prentice-Hall PTR,Beijing:Tsinghua University Press,1999,34(2):13-17.
  • 9PJ Dua,SC Liu,JS Xia and YD Zhao.Information fusion techniques for change detection from multi-temporal remote sensing images[J].Information Fusion,2013,14(1):19-27.
  • 10Mendel J M.Optimal seismic deconvolution:an estimation-based approach[J].New York Academic Press,1983,21(10):456-457.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部