期刊文献+

5-氮杂脱氧胞苷对MCF7细胞中MEG3基因表达及细胞增殖活性的影响 被引量:3

Effect of 5-aza-2’-deoxycytidine on MEG3 gene expression and proliferation of human mammary cancer line MCF7
下载PDF
导出
摘要 背景与目的:MEG3(maternal expressed gene3)基因是一类印记基因,其转录缺失可能诱导多种肿瘤的发生发展。本研究通过检测乳腺癌MCF7细胞中MEG3基因mRNA的转录情况及细胞增殖活性,以探讨DNA甲基化抑制剂5-氮杂脱氧胞苷对MEG3基因转录的诱导作用及其对细胞增殖活性的影响。方法:以浓度为5μmol/L的5-氮杂脱氧胞苷分别作用MCF7细胞0、2、4和6d后,用RT-PCR及Northern blot技术检测MEG3基因mRNA的转录水平;用四甲基偶氮唑蓝(MTT)比色法检测细胞增殖活性的变化。结果:与未处理组相比,5-氮杂脱氧胞苷分别作用2、4和6d后,MCF7细胞中MEG3基因mRNA表达显著增强,并呈现时间依赖性(P<0.01);MTT检测结果显示MCF7细胞的增殖活性受到抑制。与未处理组相比,药物作用2、4和6d的细胞增殖抑制率分别为(23.16±3.93)%、(49.39±2.38)%和(64.73±2.24)%,差异有显著性(P<0.01)。结论:MEG3基因可能具有抑制MCF7细胞生长的作用,其基因转录下调与DNA甲基化有关,可能参与了乳腺癌的发病机制。 Background and purpose: The MEG3 gene is a imprinted gene, whose loss may be associated with the pathogenesis and progression of several tumor types. This study was done to investigate the transcription of MEG3 mRNA in human mammary cancer cell line MCF7 and cell proliferation, in order to explore the effect of the methylation inhibitor, 5-aza-2'-deoxycytidine (5-aza-CdR) on MEG3 gene expression and proliferation in MCF7. Methods: MCF7 was treated with 5 μmol/L 5-aza-CdR for 2, 4, 6 days, then the alteration of MEG3 gene expression was detected by RT-PCR and Northern blot technology and the proliferation difference in cell growth of MCF7 was observed by MTT. Results: After treated with 5-aza-CdR, the transcription of MEG3 mRNA in MCF7 was increased and the growth of MCF7 was reduced. MCF7 was treated with 5 μmol/L 5-aza-CdR for 2, 4, 6 days, the inhibitory rates were (23.16±3.93), (49.39±2.38), (64.73±2.24), there were significant differences between them. Conclusion: The growth of MCF7 was possibly inhibited by MEG3 gene, and the downregulation of MEG3 gene might result from the methylation, which was involved in the mammary cancer pathogenesis.
作者 牛丽静 米粲
出处 《中国癌症杂志》 CAS CSCD 北大核心 2009年第5期331-334,共4页 China Oncology
关键词 5-氮杂脱氧胞苷 MCF7 MEG3基因 MTT 5-aza-2'-deoxycytidine, 5-aza-CdR MCF7 MEG3 gene MTT
  • 相关文献

参考文献11

  • 1Miyoshi N,Wagatsuma H,Wakana S,et al.Identification of an imprinted gene,MEG3/Gtl2 and its human homologne MEG3,first mapped on mouse distal chromosome 12 and human chromosome 14q[J].Genes Cells,2000,5(3):211-220.
  • 2Menon AG,Rutter JL,yon Sattel JP,et al.Frequent loss of chromosome 14 in atypical and malignant meningioma:identification of a putative 'tumor prograssion' locus[J].Oncogene,1997,14(5):611-616.
  • 3Mutirangura A,Pornthanakasem W,Sriuranpeng V,et al.Loss of heterozygosity on chromosome 14 in nasopharyngeal carcinoma[J].Int J Cancer,1998,78(2):153-156.
  • 4Bando T,Kato Y,Ihara Y,et al.Loss of heterozygosity of 14q32 in colorectal carcinoma[J].Cancer Genet Cytogenet,1999,111(2):161-165.
  • 5Ituyama T,Chaganti RS,Yamada Y,et al.Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma:a study of 50 cases from the human T-cell leukemia virus type-1 endemic area,Nagasaki[J].Blood,2001,97(11):3612-3620.
  • 6Zhang X,Zhou Y,Mehta KR,et al.A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells[J].J Clin Endocrinol Metab,2003,88(11):5119-5126.
  • 7Zhao J,DaMe D,Zhou YL,et al.Hyperrnethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors[J].J Clin Endocrinol Metab,2005,90(4):2179-2186.
  • 8Kim TY,Jong HS,Song SH,et al.Transcriptional silencing of the DLC-1 tumor suppressor gene by epigenetic mechanism in gastric cancer cell[J].Oncogene,2003,22(25):3943-3951.
  • 9Yuan BZ,Jefferson AM,Baldwin KT,et al.DLC-1 operates as a tumor suppressor gene in human nun-small cell lung carcinomas[J].Oncogene,2004,23(7):1405-1411.
  • 10佟海侠,张锦华,张继红,陆春伟.5氮杂胞苷诱导NB细胞Caspase8表达及对TRAIL敏感性的研究[J].肿瘤防治杂志,2005,12(22):1681-1685. 被引量:3

二级参考文献16

  • 1Hopkins-Donaldson S, Ziegler A, Kurtz S. et al. Silencing of death receptor and easpase-8 expression in small cell lung carcinoma cell lines and tumors by DNA methylation [J]. Cell Death Differ.2003,10(3):356-364.
  • 2Eggert A, Grotzer M A, Zuzak T J, et al. Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-indueed apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression[J]. Cancer Res, 2001, 61(4): 1314-1319.
  • 3Nosel M M. Pieters R. Voute P A, et al. The N-myc paradox:N-mye overexpression in neuroblastoma is associated with sensitivity as well as resistance to apoptosis[J]. Cancer Lett, 200a,.197(1-2): 165-172.
  • 4Yang X, Merchant M S, Romero M E, et al. Induction of caspase 8 by interferon gamma renders some neuroblastoma cells sensitive to tumor necrosis factor-related apoptosis inducing ligand(TRAIL) but reveals that a lack of membrane TR1/ TR2 also contributes to TRAIL resistance in NB[J]. Cancer Res,2003,63(5):1122-1129.
  • 5Kim Y, Suh N, Sporn M, et al. An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis[J]. J Biol Chem, 2002,277(25): 22320-22329.
  • 6Ebinger M, Senf L, Wachowski O, et al. Promoter Methylation Pattern of Caspase-8, P16INK4A, MGMT, TIMP-3, and E-Cadherin in Medulloblastoma[J]. Pathol Oncol Res, 2004, 10(1): 17-21.
  • 7Zuzak T J, Steinhoff D F, Sutton L N, et al. Loss of caspase-8 mRNA expression is common in childhood primitive neuroectodermal brain tumor/ medullohlastoma[J]. Eur J Cancer, 2002,38(1);83-91.
  • 8Donepudi M, Sweeney A M, Briand C, et al. Insights into the regulatory mechanism for easpase-8 activation[J]. Mol Cell,2003,11(2):543-549.
  • 9Banelli B, Casciano I, Croce M, et al. Expression and methylation of CASP8 in neuroblastoma: identification of a promoter region[J]. Nat Med,2002,8(12):1333-1335.
  • 10Muhlethaler-Mottet A, Balmas K. Auderset K, et al. Restoration of TRAIL-induced apoptosis in a caspase-8-deficient neuroblastoma cell line by stable re-expression of caspase-8[J]. Ann N Y Acad Sci, 2003,1010(6):195-199.

共引文献11

同被引文献81

  • 1Huarte M,Rinn J L. Large non - coding RNAs : missing links incancer[J]? Hum Mol Genet,2010,19(R2) ;R152 - 161.
  • 2Brosnan C A, Voinnet 0. The long and the short of noncodingRNAs[J].Curr Opin Cell Biol,2009’21 (3) :416 -425.
  • 3Guttman M, Amit I, Garber, et al. Chromatin signature revealsover a thousand highly conserved large non - coding RNAs inmammals[ J]. Nature,2009,458:223 - 227.
  • 4Ahmad M Khalil,Mitchell Guttman,Huarte M,et al. Many humanlarge expression intergenic noncoding RNAs associate withchromatin - modifying complexes and affect gene [ J ]. NationalAcad Sciences,2009,106(28) : 11667 - 11672.
  • 5Schones D E, Zhao K. Genome - wide approaches to studyingchromatin modifications [ J ]. Nat Rev Genet, 2008,9 ( 3 ) : 179 -191.
  • 6Marques A C,Ponting C P. Catalogues of mammalian long noncodingRNAs: modest conservation and 170 incompleteness [ J ]. GenomeBiol,2009,10(11) :Rm.
  • 70rom U A,Derrien T,Beringer M,et al. Long noncoding RNAs withenhancer ? like function in human cells[ J]. Cell,2010,143(1) :46 -58.
  • 8Wilusz J E,Sunwoo H,Spector D L. Long noncoding RNAs:functionalsurprises from the RNA world [J]. Genes Dev ,2009,23:1494 - 1504.
  • 9Barsyte - Lovejoy D,Lau S K,Boutros P C. The c - Myc oncogenedirectly induces the H19 noncoding RNA by allele - specificbinding to potentiate tumorigenesis [ J ]. Cancer Res,2006,66 :5330 -5337.
  • 10Matouk I J,De Groot N. The H19 noncoding RNA is essential forhuman tumor growth[ J]. PLoS ONE,2(K)7,2(9) :e845.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部