期刊文献+

基于能量变换与小波分解的QRS波群检测算法 被引量:6

Detection of QRS Complex Using Energy Transform and Wavelet Decomposition
下载PDF
导出
摘要 目的使用能量变换与小波分解的联合算法检测心电信号QRS波群的特征点,为心电信号的自动分析提供新的手段。方法能量变换是基于信号的局部特征的,可以有效地突出信号的峰点或谷点;小波分解对信号做多分辨率分解,可以突出信号的特征信息;两种方法的结合更利于QRS波群的检测。结果使用30例样本检测算法性能,证明联合算法能够提高信噪比,对特征点的定位准确可靠。经MIT/BIH心电数据库的检测验证,其R波定位的正确率高达99.79%。使用心率趋势图分析计算结果,不仅可以完全纠正误检和漏检,而且能够定位异常的心搏。结论本算法能够准确、实时地识别被噪声严重干扰的心电信号的QRS波群,因而在心电信号的自动分析中有很好的应用前景。 Objective To find a new method for ECG auto-analysis of through the combination of energy transform and wavelet decomposition for detecting the characteristic point of QRS complex. Methods The energy transform was based on the signal shape and clarified its peaks or valleys. The wavelet transform did multi-resolution analysis on the signal and clarified the ECG characteristics. The combined way could detect the QRS complex easier. Results Based on 30 samples, test proved that the new combined approach improved the signal-to-noise ratio, accuracy and reliability. By using the MIT/BIH arrhythmia database, the QRS detected rate rose to 99.79%. The using of heart rate trendline could not only correct false and missed QRS location, but also easily detect ectopic heart beats. Conclusion The new combined approach can be used to localize the QRS complex accurately and promptly in the ECG signal with serious noise, and brings a prosperous application in the auto analysis of ECG.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2009年第3期187-191,共5页 Space Medicine & Medical Engineering
基金 中国载人航天工程项目资助
关键词 心电图 QRS波群 小波分解 能量变换 electrocardiogram (ECG) QRS complex wavelet decomposition energy transform
  • 相关文献

参考文献8

  • 1Kohler BU, Hennig C, Orglmeister R. The Principles of Software QRS Detection [ J ]. IEEE Engineering in Medicine and Biology, 2002, 49(3):42-57.
  • 2Hamilton PS, Tompkins WJ. Quantitive investigation of QRS detection rules using the MIT/BIH arrhythmia database [ J ]. IEEE Trans on Biomed Eng, 1986,33(11) :1157-1165.
  • 3Friensen GM, Jannett TC, Jadallah MA , et al. Comparison of the noise sensitivity of nine QRS detection algorithms [ J ]. IEEE Trans on Biomed Eng, 1990, 37 (1) : 85-98.
  • 4Grizali F,Frangakis G, Papakonstantinou G. A comparison of the length and energy transformations for the QRS detection [ J ]. IEEE Engineering in Medicine and Biology Society, 1987, 34(9) :549-550.
  • 5Grizali F. Towards a generalized scheme for QRS detection in ECG waveforms [ J ]. Signal Processing, 1988, 15 (2) : 183- 192.
  • 6陈培军,陈士贵,俞尧荣,刘向昕.二项式小波检测心电特征点[J].航天医学与医学工程,2004,17(1):59-63. 被引量:6
  • 7Trahanias PE. An approach to QRS complex detection using mathematical morphology [ J ]. IEEE Trans on Biomed Eng, 1993, 40 (2) : 201-205.
  • 8LIU Shaoying,LU Jilai, HAO Li. Detection of QRS complex using mathematical morphology and wavelet transform [ J ]. Tsinghua Univ (Sci & Tech), 2004, 44(6) : 852-855.

二级参考文献4

  • 1Gary M, Friesen. A comparison of the noise sensitivity of nine QRS detection algorithms[ J ]. IEEE Trans on BME,1990,37(1) : 85-98.
  • 2NB McLaughlin, Accuracy of automatic QT measurement techniques[J]. IEEE Trans on BME, 1993, 33(1):192-200.
  • 3Valtino X, Afonso, Willis J, Tompkins,et al. Filter bank based ECG beat detection[ C]. Proceedings of 19th Annual Conference of IEEE/EMBS, 1996. 1037-1038.
  • 4Cuiwei Li,Chongxun Zheng,Changfeng Tai. Detection of ECG characteristic points using wavelet transforms [ J ].IEEE Trans on BME,1995,42(1) : 21-28.

共引文献5

同被引文献66

  • 1陈迪虎,张宾,杨圣.基于差分方法的QRS波检测[J].生物医学工程学杂志,2008,25(3):502-505. 被引量:3
  • 2陆宏伟,周祥宇,翁善来,刘玫,练宓.基于LabVIEW的便携式房颤检测系统的研制[J].中国医学物理学杂志,2011,28(4):2792-2795. 被引量:1
  • 3戴伟川,李碧霞,尹国朝,沈菊萍.飞行人员运动试验心电轴偏移特点研究[J].中国疗养医学,2006,15(6):406-408. 被引量:3
  • 4孙荣荣,汪源源,方祖祥.基于灰色关联度k-近邻法的房性心律失常识别[J].航天医学与医学工程,2007,20(3):193-197. 被引量:5
  • 5Jensen BR, Laursen B, Sji~gaard G. Aspects of shoulder func- tion in relation to exposure demands and fatigue - a mini re- view [ J]. Clinical Biomechanics, 2000, 15 (1) : 17-20.
  • 6Zadry HR, Dawal SZ. Future research on muscle and mental fatigue in industry : a mini review [ C ]. In : Osman NAA, Ibrahim F, Abas WABW, et al, eds. The 4th Kuala Lumpur International Conference on Biomedical Engineering. Kuala Lumpur, Malaysia: Springer Berlin Heidelberg, 2008: 794- 797.
  • 7Luttmann A, Jager M, Laurig W. Electromyographical indi- cation of muscular fatigue in occupational field studies [ J ]. International Journal of Industrial Ergonomics, 2000, 25 (6) : 645 -660.
  • 8Kiryu T, Ushiyama Y, Tan K. Fatigue assessment during ex- ercise using myoelectric signals and heart rate variability [ C]. In: Proceedings of the 22nd Annum EMBS Internation- al Conference. Chicago, USA : IEEE, 2000 : 1889-1892.
  • 9Kiryu T, Motomiya N, Ushiyama Y, et al. Snapshot Evalua- tion of Fatigue during Skiing Exercise [ C ]. In : Proceedings of the 20th Annual International Conference of the IEEE Engi- neering in Medicine and Biology Society. Hong Kong , Chi- na: IEMBS, 1998: 2775-2778.
  • 10Zhuang JJ, Huang XL, Ning XB, et al. Spectral analysis of heart rate variability applied in the exercise of professional shooting athletes [C]. In: The 7th Asian-Pacific Conference on Medical and Biological Engineering. Beijing, China: APCMBE, 2008:326-328.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部