期刊文献+

基于电场燃烧合成三种典型放热体系的研究

Study on the Combustion Synthesis Based on Electric Field of Three Type of Radiative Systems
下载PDF
导出
摘要 研究电场作用下,电流强度1.5×104A,Fe-Ti-C、Fe-V-C和W-C-Co3种典型放热体系电场燃烧合成产物的特征。通过试样在加热升温过程中反映出的曲线特点,结合对产物的X射线衍射分析(XRD)以及扫描电镜(SEM)等的分析,得到的结果表明:在本研究条件下,放热量对体系反应有较为显著的影响,随着体系放热量的减少,点火温度升高。点火延迟时间增长,而产物中易出现中间相或不稳定相。 In this paper, the character of combustion synthesis products which were obtained by Fe-Ti-C, Fe-V-C and W-C -Co system under 1.5 × 10^4 A electric current was studied. A series of research was taken, such as the curve character of the heating process, and the analysis of product by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that under the same electric current, the calorific capacity have important influence on the action, i.e. the ignition temperature and the ignition delay time is increased along with the decreasing of the sample's calorific capacity, and thus the intermediate phase or unstable phase appears in the production easily.
机构地区 四川大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2009年第A01期224-228,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金青年基金资助项目(50404014)
关键词 燃烧合成:电流强度 放热体系 点火温度 点火延迟时间 物相组成 combustion synthesis electric current heat system ignition temperature ignition delay time phase formation
  • 相关文献

参考文献5

二级参考文献41

  • 1C.Zhao, J.Vleugels.Alumina/Ce-Tzp Functionally Graded Materials by Electrophoretic Deposition[J].材料科学与工程学报,2000,20(z1):250-254. 被引量:20
  • 2金燕苹,洪涛,郑灵仪,李鹏兴,王本民,金璐.SiC晶须强韧化MoSi_2复合材料[J].材料研究学报,1994,8(2):183-187. 被引量:14
  • 3谢宏,凌宏江,严有为.电场作用下自蔓延高温合成过程的数理模型[J].武汉理工大学学报,2006,28(9):15-17. 被引量:2
  • 4[1]A Mortensen and S. Suresh, "Functionally Graded Metals and Metal-Ceramic Composites: Part 1 Processing," Int. Mat. Rev. 40 [6] 23-65 (1995).
  • 5[2]S. Suresh and A. Mortensen, "Functionally Graded Metals and Metal-Ceramic Composites: Part 2Thermomechanical Behaviour," Int. Mat. Rev. 42 [3]85-116 (1997).
  • 6[3]Neubrand and J. Rodel, "Gradient Materials: An Overview of a Novel Concept," Z. Metallkd. 88 [5]358-71 (1997).
  • 7[4]T. Hirai, Functional Gradient Materials, Materials Science & Technology, Ed. By R. W. Cahn, P.Haasen, E. J. Kramer, Vol. 17B: Processing of Ceramics, Vol. Ed: R. J. Brook, VCH Verlagsgesellschaft mbH, Weiheim, 1996
  • 8[5]W. Powers, "The Electrophoretic Forming of BetaAlumina Ceramics," J. Electrochem Soc. 122 [4] 490-99(1975).
  • 9[6]Sarkar, X. Huang and P. Nicholson, Zirconia/Alumina Functionally Gradiented Composites by Electrophoretic Deposition Techniques," J. Am. Ceram. Soc. 76[4]1055-56 (1993).
  • 10[7]C. Zhao, J. Vleugels, L. Vandeperre, B. Basu and O.Van Der Biest, Y-TZP/Ce-TZP Functionally Graded Composite, J. Mat. Sci. Lett. 17 [17] 1453-55 (1998).

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部