期刊文献+

INCO-617合金空心球颗粒的制备与力学性能研究 被引量:1

Fabrication and Mechanical Properties of INCO-617 Alloy Hollow Sphere Particles
下载PDF
导出
摘要 在1100~1230℃的温度下真空烧结表面涂覆一层由聚乙烯醇粘结剂、合金粉末和分散剂构成的浆料的聚苯乙烯球制得高孔隙率的INCO-617合金空心球颗粒,对不同烧结工艺下制备的空心球颗粒的显微组织和力学性能进行了研究。结果表明,INCO-617合金空心球颗粒的密度随烧结温度的升高和烧结时间的延长而增加,其密度值在1.504~2.113g/cm3之间。烧结温度的升高和烧结时间的延长可以明显减少球壁的残余孔隙,这是空心球颗粒显微硬度和压缩性能提高的主要原因,并且,随着球壁内残余孔隙的降低,空心球颗粒压缩时脆性破坏的倾向被抑制。 Regular structured metallic foams might be prepared by sintering or bonding the hollow sphere particles, which are being attracted more interest for various applications. The properties of the final hollow-sphere metallic foams depend to a large extent on the properties of prefabricated hollow sphere particles. In the paper, the high porosity INCO-617 alloy hollow sphere particles were fabricated by sintering polystyrene spheres coated with a slurry, consisting of the PVA binder, alloy powders and dispersant, at temperature ranging from 1100 ℃ to 1230 ℃ in vacuum. The microstructures and mechanical properties of the hollow sphere particles were investigated under different sintering processes. The results show that the densities of INCO-617 alloy hollow sphere particles, increasing with the increase of sintering temperature and sintering time, range from 1.504 to 2.113 g/cm^3. Increase of sintering temperature and sintering time decreases the residual porosity of sphere wall obviously, which is the main factor to enhance the microhardness and compression properties of hollow sphere particles. Furthermore, with the residual porosity in the sphere wall decreasing, the tendency of hollow spheres toward brittle fracture under compression loading is suppressed.
机构地区 哈尔滨工业大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2009年第A01期535-539,共5页 Rare Metal Materials and Engineering
关键词 空心球颗粒 INCO-617合金 烧结 力学性能 hollow sphere particles INCO-617 alloy sinter mechanical property
  • 相关文献

参考文献13

  • 1Banhart J. Progress in Material Science[J], 2001, 46:559
  • 2Liu Peisheng(刘培生).Introduction to Cellular Materials(多孔材料引论)[M].Beijing: Tsinghua University Press, 2003
  • 3Gasser S, Paun F, Riffard Let al. Scripta Materialia[J], 2004, 50:401
  • 4Karagiozova D, Yu T X, Gao Z Y. International Journal of Mechanical Sciences[J], 2006, 48:1273
  • 5Sanders W S, Gibson L J. Materials Science and Engineering A[J], 2003, 347:70
  • 6Lira T J, Smith B, Medowell D L. Acta Materialia[J], 2002, 50: 2867
  • 7Sanders W S, Gibson L J. Materials Science and Engineering A[J], 2003, 352:150
  • 8Wagg U, Schneider L, Lothman Pet al. Metal Powder Report[J], 2000, 55(1): 29
  • 9Orinakova R, Orinak A, Arlinghaus H F et al. Applied Surface Science[J], 2006, 252:7030
  • 10Banhart J, Baumeister J. Journal of Materials Science[J],1998, 33:1431

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部