期刊文献+

基于最大信噪比的潜艇振动信号盲分离算法 被引量:2

Submarine Vibration Signal Blind Separation Technology Based on Maximal Signal Noise Ratio
下载PDF
导出
摘要 为解决复杂多信号源的振动信号处理难题,提出了一种基于最大信噪比的盲分离算法,对振动源信号进行分离提纯,然后对分离的各个信号进行后续处理的盲源分离技术。在介绍盲分离技术的基础上,采用基于最大信噪比的盲分离算法对分离效果进行了仿真。仿真结果表明,采用该方法在无需任何先验知识的情况下,可以很好地分离出各振动源信号,为后续的信号处理(如分析识别、减振降噪等)奠定了基础。 In order to solve the problem of complex multi-vibration source signal processing,this paper proposes a new blind source separation technology, which adopts maximal signal noise ratio technology to separate the original signal blindly and implement subsequent processing to each of the separated signals. Then the paper simulates the separation effect using SNR-based ICA algorithm. The simulation result shows that the original signal can be separated primely by adopting this method without any priori information. This study establishes a base for following signal processing, such as signal analysis and identification, vibrationisolation and so on.
作者 王凌燕 侯文
出处 《机械工程与自动化》 2009年第3期110-111,114,共3页 Mechanical Engineering & Automation
关键词 最大信噪比 盲信号处理 振动信号 盲分离技术 maximal signal noise ratio (SNR) blind signal processing vibration analysis blind source separation technology
  • 相关文献

参考文献7

  • 1Cardoso J F. Source separation using higher order moments [C]//Proc of ICASSP. Glasgow, UK, 1989: 2109-2112.
  • 2Comon P. Independent component analysis ,a new concept [J].Signal Processing, 1994,36(3) : 287-314.
  • 3杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002,28(5):762-772. 被引量:148
  • 4Cardoso J F, Laheld B H. Equivariant adaptive source separation[J]. IEEE Trans on Signal Processing, 1996,41 (12) : 3017-3030.
  • 5张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 6M Borga. Learning multidimensional signal processing [D]. Sweden :Linkosping University, 1998.
  • 7李舜酩.机械振动信号盲源分离的时域方法[J].应用力学学报,2005,22(4):579-584. 被引量:19

二级参考文献67

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 3焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 4[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 5[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 6[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 7[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 8[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 9[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 10[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.

共引文献356

同被引文献21

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部