期刊文献+

基于高斯混合模型的道路交通状态特征辨识方法 被引量:1

Method for Identification of Roadway Traffic Characteristics Based on Gaussian Mixture Models
下载PDF
导出
摘要 针对交通流流量、占有率和速度3个基本参数,提出一种基于高斯混合模型的道路交通状态特征辨识方法.利用Expectation-Maximization(EM)算法实现对混合模型的参数估计,结合Bayes方法和柯尔莫哥洛夫-斯米尔诺夫检验进行混合模型的选择.应用北京市实际道路交通流参数数据对所提出的方法进行了验证分析,取得一些具有实际应用意义的特征指标,并就此方法应用中的一些问题进行了讨论. A method is developed in this paper, based on Gaussian mixture models (G models), to identify roadway traffic characteristics after an analysis of three basic parameters : traffic flow volume, occupancy and speed. The parameters of G modets are estimated by Expectation-Maximization (EM) algorithm, and Bayes criteria together with Kolmogorov-Smirnov test are used for the choice of fitting G models. The application of the proposed method to the analysis of freeway traffic flow data in Beijing achieves some characteristic indexes of practical significance.
出处 《中南林业科技大学学报》 CAS CSCD 北大核心 2009年第2期151-155,169,共6页 Journal of Central South University of Forestry & Technology
基金 973项目资助(项目编号:2006CB705507)
关键词 交通运输工程 交通状态 特征 高斯混合模型 EM算法 模型选择 traffic and transportation engineering traffic situation characteristics Gaussian mixture model EM algorithm model selection
  • 相关文献

参考文献7

  • 1Kerner B S.Tracing and forecasting of congested patterns for highway traffic management[C]//2001 IEEE ITSC Proceedings,2001,12:25-29.
  • 2Golob T F,Recker W W.A method for relating type of crash to traffic flow characteristics on urban freeways[J].Transportation research (Part A),2004(38):53-80.
  • 3Ishak S,Asce M.Exploring textural characteristics of spatiotemporal traffic contour maps[J].Journal of transportation engineering,2004,(2):122-131.
  • 4Bilmes J A.A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models[J/OL].1998.http://ssli.ee.washington.edu/people/bilmes/mypapera/em.ps.gz.
  • 5Kass R E,Raftery A E.Approximate Bayes factors and model accounting for model uncertainty in generalizes linear model[R/OL].Technical Report,1993.http://www.star.washington.edu/www/research/reports/ 1993/tr255.ps.
  • 6美国交通研究委员会(TRB).道路通行能力手册[M].任福田,任杰,刘国新,等译.北京:中国建筑工业出版社,1991.
  • 7荣建,常成利,刘小明,任福田.标定交通流模型时最小统计间隔的选择[J].北京工业大学学报,1999,25(4):49-55. 被引量:7

二级参考文献4

  • 1丹尼尔 L 鸠洛夫 蒋璜(译).交通流理论,美国运输科学验究所专题报告165号[M].北京:人民交通出版社,1983.88-95.
  • 2周荣贵 张智勇 等.公路路段自由流速度与通行能力分析.公路科研中心学术交流会论文集[M].北京:交通部公路科学研究所,1998.46-56.
  • 3周荣贵,公路科研中心学术交流会论文集,1998年,46页
  • 4蒋璜(译),交通流理论.美国运输科学验究所专题报告.165,1983年,88页

共引文献6

同被引文献14

  • 1姚荣涵,王殿海,李丽丽.机动车车头时距分布的韦布尔修正模型[J].吉林大学学报(工学版),2009,39(2):331-335. 被引量:11
  • 2刘江,吕津燕,荣建,任福田.车头时距分布模型及其在山区双车道公路的应用[J].交通运输工程与信息学报,2004,2(4):16-22. 被引量:5
  • 3GARTNER N H, MESSER C, RATHI A K. Mono- graph on traffic flow theory EM. Washington.. The Federal Highway Administration (FHWA), 1996.
  • 4JIN S, QU X, XU C, et al. Dynamic characteristics of traffic flow with consideration of pedestrians' road- crossing behavior [J]. Physica A, 2013, 392(18) : 3881 - 3890.
  • 5NAGATANI T. Chaos and headway distribution of shuttle buses that pass each other freely [J]. Physica A, 2003, 323:686 - 694.
  • 6DAWSON R F, CHIMINI L A. The hyperlang probability distribution: a generalized traffic headway model[J]. High- way Rer, eareh Record, 1968, 244(230) : 1 - 14.
  • 7TOLLE J E. The lognormal headway distribution model [J ]. "Ii'affic Engineering and Control, 1971, 13 ( 1 ) : 22 - 24.
  • 8COWAN R J. Useful headway models [J]. Transporta- tion Research, 1975, 9:371 - 375.
  • 9OHTA H. Distance headway behavior between vehicles from the viewpoint of proxemics [J]. IATSS Research, 1994, 18(2): 6-14.
  • 10TAIEB-MAIMON M, SHINAR D. Minimum and com- fortable driving headways: reality versus perception [J]. Human Factors, 2001,43(1) :159 - 172.

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部