摘要
针对交通流流量、占有率和速度3个基本参数,提出一种基于高斯混合模型的道路交通状态特征辨识方法.利用Expectation-Maximization(EM)算法实现对混合模型的参数估计,结合Bayes方法和柯尔莫哥洛夫-斯米尔诺夫检验进行混合模型的选择.应用北京市实际道路交通流参数数据对所提出的方法进行了验证分析,取得一些具有实际应用意义的特征指标,并就此方法应用中的一些问题进行了讨论.
A method is developed in this paper, based on Gaussian mixture models (G models), to identify roadway traffic characteristics after an analysis of three basic parameters : traffic flow volume, occupancy and speed. The parameters of G modets are estimated by Expectation-Maximization (EM) algorithm, and Bayes criteria together with Kolmogorov-Smirnov test are used for the choice of fitting G models. The application of the proposed method to the analysis of freeway traffic flow data in Beijing achieves some characteristic indexes of practical significance.
出处
《中南林业科技大学学报》
CAS
CSCD
北大核心
2009年第2期151-155,169,共6页
Journal of Central South University of Forestry & Technology
基金
973项目资助(项目编号:2006CB705507)
关键词
交通运输工程
交通状态
特征
高斯混合模型
EM算法
模型选择
traffic and transportation engineering
traffic situation
characteristics
Gaussian mixture model
EM algorithm
model selection