期刊文献+

可伸缩双域Montgomery乘法器的优化设计与实现

An optimized scalable and unified hardware architecture of Montgomery multiplier
下载PDF
导出
摘要 模乘运算是公钥密码算法中的关键运算,本文基于全字运算的Montgomery模乘算法,设计了具有可伸缩硬件结构的模乘器。该模乘器可以基于固定的数据路径宽度对任意长度的数据进行运算,并且能够支持两个有限域上的运算。最后用Verilog硬件描述语言对该乘法器的硬件结构进行代码设计,并用Synopsys公司的Design Complier在Artisan SIMC 0.18μm typical工艺库下综合。实验结果表明,相对于其他模乘器设计,本文设计具有较高的时钟频率,并且由于大大减少了运算所需的时钟周期数,模乘运算速度较快。 Modular multiplication is the core operation of PKC(public key cryptography). Based on the full-word Montgomery multiplication algorithm, a scalable and unified modular multiplier is proposed, which can work with any precision of the opemnds and work in both prime and binary fields. It is captured in Verilog and synthesized under 0. 18 μm CMOS technology. The result indicates that this work can achieve high clock frequency and perform efficiently than other works, as the clock numbers are reduced greatly.
作者 秦帆 戴紫彬
出处 《电子技术应用》 北大核心 2009年第6期61-64,68,共5页 Application of Electronic Technique
关键词 公钥密码 MONTGOMERY模乘 双有限域 可伸缩结构 ASIC PKC Montgomery multiplication algorithm prime finite field and binary extension finite field scalable architecture ASIC
  • 相关文献

参考文献8

  • 1MILLER V S.Use of elliptic curves in cryptography[C]. CRYPTO' 85,1986 : 417-426.
  • 2KOBLITZ N.Elleptic curve cryptosystems[J].Mathematics of computation, 1987,48 (4) : 203 - 209.
  • 3MONTGOMERY P L.Modular multiplication without trial division[J].Mathematics of Computation, 1985,44 : 519-521.
  • 4ORLANDO G,PAAR C.A Scalable GF(p) elliptic curve processor architecture for programmable hardware[J].Proc Cryptogr-aphic Hardware and Embedded Systems(CHES 2001) , 2001 : 349-363.
  • 5TENCA A F,KOC C K.A scalable architecture for montgomery multiplication [ J ]. Proc. Cryptographic Hardware andEmbed- ded Systems. (CHES 1999), 1999:94-108.
  • 6SAVAS E,TENCA A F,KOC C K.A sscalable and unified multiplier architecture for fields GF(p) and GF(2m)[J].Proc. Cryptographic hardware and embedded systems(CHES 2000), 2000 : 1-20.
  • 7SATOH A,TAKANO K.A scalable Dual-Field elliptic curve cryptographic processor[ J ]. IEEE.Trans. Computers, 2003,52 : 449-460.
  • 8史焱,吴行军.高速双有限域加密协处理器设计[J].微电子学与计算机,2005,22(5):8-12. 被引量:14

二级参考文献11

  • 1Schneider B. Applied Cryptography: Protocols, Algorithms,and Source Code in C, John Wiley & Sons, New York, 2ndedition, 1996.
  • 2Stinson D R. Cryptography: Theory and Practice, CRCPress, Boca Raton, Florida, 1995.
  • 3Montgomery P L. Modular Multiplication Without Trail Division. Mathematics of Computation, April 1985, 44(170):519~521.
  • 4Kaliski. The Montgomery Inverse and its Applications.IEEE Trans. on Computers, August 1995, 44(8): 1064~1065.
  • 5Gutub, Tenca, Koc,. Scalable VLSI Architecture for GF(p)Montgomery Modular Inverse Computation., ISVLSI 2002- IEEE Computer Society Annual Symposium on VLSI,Pittsburgh, Pennsylvania, 2002, 25~26.
  • 6A Bernal, A Guyot. Hardware for Computing Modular Multiplication Algorithm IEEE Proc. 24th European SolidState Circuits Conference (ESSCIRC' 98) La Hage, Netherlands, September, 1998.
  • 7Savas, Tenca, Koc, . A Scalable and Unified Multiplier Architecture for Finite Fields GF(p) and GF0., In Cryptographic Hardware and Embedded Systems, Lecture Notes in Computer Science. Springer, Berlin, Germany, 2000.
  • 8Savas, Koc. The Montgomery Modular Inverse. Revisited.,IEEE Trans. on Computers, July 2000, 49(7): 763~766.
  • 9Kobayashi, Morita. fast Modular Inversion Algorithm to Match Any Operation Unit. IEICE Trans. Fundamentals,May 1999, E82-A(5):733~740.
  • 10Tenca, Koc. A Scalable Architecture for Mont-gomery Multiplication., In Cryptographic Hardware and Embedded Systems, no. 1717 in Lecture notes in Computer Science,Springer, Berlin, Gemany, 1999.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部