期刊文献+

旋流腔结构对涡流二极管性能及流动影响的数值模拟 被引量:2

Numerical simulation of effect of swirling chamber structure on performance and flow in vortex diode
下载PDF
导出
摘要 为了探讨旋流腔结构对涡流二极管正向流动和反向流动的影响,分别采用RNGκ-ε湍流模型和κ-ε湍流模型进行了数值模拟,模拟结果与实验数据吻合良好。在此基础上,计算分析了旋流腔结构型式及几何尺寸对正向流动和反向流动的影响,并得到了旋流腔的优化结构。结果表明:渐缩型旋流腔反向阻力系数最大;薄板型正向阻力系数最小;渐缩型综合性能最佳,可以在原型基础上提高30%。渐缩型旋流腔中心高度应根据等流速设计原则,其最佳值略小于轴向出口管直径的1/4。 Numerical simulations employing RNG κ-ε turbulent model and κ-ε turbulent model respectively were made to investigate the effect of swirling chamber structure on the forward flow and reverse flow. Numerical results were in good agreement with experimental data. Based on the numerical simulation, computations with different structures and geometrical parameters were performed for both flow directions. The optimal structure was obtained. The results showed that the converging chamber had the largest resistance for the reverse flow, the thin cylindrical chamber had the smallest resistance for the forward flow. As to the overall performance, the converging one is the best, with an increase of 30%. The height of the chamber center should be designed following the equivalent velocity principle, and the best value was slightly less than 1/4 of the diameter of the axial pipe.
出处 《化工学报》 EI CAS CSCD 北大核心 2009年第6期1409-1413,共5页 CIESC Journal
基金 中国博士后科学基金项目(20080431323)~~
关键词 涡流二极管 旋流腔 阻力系数 优化 vortex diode swirling chamber resistance coefficient optimization
  • 相关文献

参考文献12

  • 1GuoYanhua(郭彦华) JingShan(景山) wuQiulin(吴秋林) ChenJing(陈靖) SongChongli(宋崇立).Performance of vortex diode pump[J].高校化学工程学报,2004,55(10):1625-1630.
  • 2Zobel R. Experiments on hydraulic elbow. Mitt. Hydraul. Inst. Munich. , 1930, 8 (19): 1-47.
  • 3Syred N, Grant J, Sidhu B S. A thin chamber vortex diode: US, 4112977. 1978-9-12.
  • 4Wada T, Takagi M, Shimizu A. Study on a fluidic pump with vortex diodes//Fluid Control and Measurement. Tokyo: Pergamon Press, 1986:421-426.
  • 5Hideki Yoshitomi, TsutomuWada, et al. The effects of design parameters on vortex diode pump performance// Japanese Mechanical Society Essays. Japan: Japanese Mechanical Society, 1989:3434-3439.
  • 6Kulkarni A A, Ranade V V, Rajeev R, et al. CFD simulation of flow in vortex diodes. AIChEJournal, 2008, 54 (5) : 1139-1152.
  • 7Gallaire F, Chomaz J M. Instability mechanisms in swirling flows. PhysicsofFluids, 2003, 15 (9):2622-2639.
  • 8WangFu]un(王福军).Analysis Computational Fluid Dynamics--Theory and Application of CFD Software (计算流体动力学分析——CFD软件原理与应用).Beijing:Tsinghua University Press, 2004.. 124-125.
  • 9Kreith F, Sonju O K. The decay of a turbulent swirl in a pipe. J. Fluid Mech. , 1965, 22 (2): 257-271.
  • 10TaoWenquan(陶文铨). Numerical Heat Transfer (数值传热学).Xi’an(西安):Xi’anJiaotong University Press,2005;203-211.

同被引文献33

  • 1刘金红,王怡红,郭志睿,顾宁.银表面分子自组装膜的防腐性能[J].化工学报,2004,55(10):1674-1677. 被引量:9
  • 2Bringley T T, Childress S, Vandenberghe N, Zhang J. An experimental investigation and a simple model of a valveless pump [J]. Physics of Fluids, 2008, 20:033602.
  • 3Shah A, Chughtai I R, Inayat M H. Experimental and numerical analysis of steam jet pump [J]. International Journal of Multiphase Flow, 2011, 37 (10): 1305-1314.
  • 4Kassab S Z, Kandil H A, Warda H A, Ahmed W H. Air-lift pumps characteristics under two-phase flow conditions [J]. International Journal of Heat and Fluid Flow, 2009, 30 (1): 88-98.
  • 5Khalil M F, Elshorbagy K A, Kassab S Z, Fahmy R I. Effect of air injection method on the performance of an air lift pump [J]. International Journal of Heat and Fluid Flow, 1999, 20 (6): 598-604.
  • 6Samaras V C, Margaris D P. Two-phase flow regime maps for air-lift pump vertical upward gas-liquid flow [J]. International Journal of Multiphase Flow, 2005, 31 (6): 757-766.
  • 7Hanafizadeh P, Ghanbarzadeh S, Saidi M H. Visual technique for detection of gas-liquid two-phase flow regime in the airlift pump [J]. Journal of Petroleum Science and Engineering, 2011, 75 (3/4): 327-335.
  • 8Phillips C, Richardson J E, Fallows P. Maintenance free transfer and mixer devices for high radioactive applications-design, development, deployment and operational experience //WM'06 Conference [C]. Tucson, 2006:1-17.
  • 9Kulkami A A, Ranade V V, Rajeev R, Koganti S B. Pressure drop across vortex diodes: experiments and design guidelines [J]. Chemical Engineering Science, 2009, 64:1285-1292.
  • 10Tippetts J R, Swithenbank J. Fluidic flow control devices and pumping systems [P]: US, 4021146. 1974.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部