期刊文献+

基于属性预扫描的不确定性函数依赖挖掘 被引量:1

Discovering functional dependencies with degrees of satisfaction using attribute pre-scanning
原文传递
导出
摘要 函数依赖是关系数据库和数据建模中所需的关键约束知识。在海量数据中挖掘函数依赖时为降低噪音干扰和提高效率,该文采用带有满意度函数依赖的概念及挖掘带有满意度函数依赖的算法(MFDD),对噪音进行测度与表达,并有效挖掘得到函数依赖最小集。利用对属性散列度的测度概念,在带有满意度函数依赖的理论框架内采用3条优化策略,实现了属性预扫描算法。结果表明:基于该算法可显著提高挖掘效率。 The functional dependency (FD) is a key constraint knowledge in relational databases and data modeling. However, noisy data and low efficiencies restrict the ability to mine functional dependencies in massive databases. Functional dependencies with degrees of satisfaction were used to discover minimal sets of functional dependencies (MFDD). The method not only measures the noises, but also efficiently discovers the minimal set of functional dependencies. A degree of diversity was used with a pre-scanning operation to evaluate the attribute value diversity to develop three optimization strategies for the functional dependency with a degree of satisfaction. Both theoretical analyses and test results show that the algorithm significantly improves the mining efficiency.
作者 卫强 周晓沧
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第6期920-924,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(70231010,70621061)
关键词 数据库 数据挖掘 带有满意度函数依赖 散列度 database data mining functional dependency with degree of satisfaction degree of diversity
  • 相关文献

参考文献10

  • 1Codd E F. A relational model for large shared data banks [J]. Commu Asso Compu Mach, 1970, 13(6): 377- 387.
  • 2Ullman J D. Principles of Database and Knowledge-Based Systems[M]. Maryland, USA: Computer Sciences Press Inc, 1988.
  • 3Huhtala Y, Karkkainen J, Porkka P, et al. Efficient discovery of functional and approximate dependencies using partitions[C]// Proc 14th Int Conf on Data Eng. IEEE Computer Society Press, 1998.
  • 4Baudinet M, Chomicki J, Wolper P. Constraint-generating dependencies[J]. J Comput Syst Sci, 1999, 59(1): 94 - 115.
  • 5Bell S, Broekhausen P. Discovery of data dependencies in relational databases [R]. LS-8 Report 14. University of Dortmund, Germany, 1995.
  • 6Wyss C, Giannella C, Robertson E. FastFDs: A heuristic-driven depth-first algorithm for mining functional dependencies from relation instances[R]. Technical Report 551, USA : CS Department, Indiana University, 2001.
  • 7Castellanos M, Saltor F. Extraction of data dependencies [R]. Report LSI-93-2-R. Barcelona : University of Catalonia, 1993.
  • 8Flaeh P A, Savnik I. Database dependency discovery: A machine learning approach[J].Artificial Intelligence Commun, 1999, 12(3): 139-160.
  • 9WEI Qiang, CHEN Guoqing. Efficient discovery of functional dependencies with degrees of satisfaction [J]. J Intelli Syst, 2004, 19: 1089- 1110.
  • 10WEI Qiang, CHEN Guoqing. Optimized algorithm of discovering functional dependencies with degrees of satisfaction[C]//Ruan D, D'hondt P, Fantoni P F, et al, eds. Applied Artificial Intelligence, 7th Int FLINS Conf. Genova, Italy: Word Scientific Press, 2006: 169- 176.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部