期刊文献+

电渗驱动微流道内流场的数值模拟 被引量:7

Numerical Simulation of Electroosmotic Flow in Microchannels
下载PDF
导出
摘要 针对微流道中电场和流场耦合的问题,建立了电渗流的数学模型,应用有限元法对微流道内的速度分布进行了稳态和瞬态的数值模拟。研究了电场强度、溶液浓度和微流道高度等因素分别对微流动速度在空间和时间上的影响规律。结果表明,在电渗驱动下,微流道中的流体流动呈现"塞状"流型,流动速度与电场强度及微流道表面静电势成正比,而与微流道的高度无关。微流体由开始运动到稳态的过度时间的尺度为毫秒量级,大小与微流道高度比值的平方成正比,而与电场强度和溶液浓度无关。研究结果为电渗驱动在微流控芯片中的应用提供了理论依据。 Aiming at the coupling problems of electrical potential field and flow field in microchannel, the mathematical models of electroosmotic flow were made, and numerical simulation of steady state and transient state based on finite element method was proposed. The influence of electric field, ionic concentration and scales of microcharmel to velocity in spatial and time was analyzed. The results show that velocity distribution of microflow is "plug-like" microflow rate is proportion to the electrical field strength and zeta potential, while irrelevant with the height of the microchannel. The scale of steady time of microflow is microsecond, and the magnitude is proportion to the square of ratio of height of the microchannel, while irrelevant with the electric field strength and ionic concentration. The results provide the references for the application of electroosmotie driven in mierofluidic chips.
作者 杨大勇 刘莹
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第11期3199-3202,共4页 Journal of System Simulation
基金 国家自然科学基金(50730007)
关键词 微流道 电渗流 双电层 数值模拟 有限元法 microcbannels eleetroosmotic flow (EOF) electric double layer (EDL) numerical simulation finite element method (FEM)
  • 相关文献

参考文献12

  • 1冯焱颖,周兆英,叶雄英,汤扬华.微流体驱动与控制技术研究进展[J].力学进展,2002,32(1):1-16. 被引量:47
  • 2Woias E Micropumps-past, progress and future prospects [J]. Sensors and Actuators B (S0925-4005), 2005, 105(1): 28-38.
  • 3Patankar N A, Hu H H. Numerical simulation of electroosmotic flow [J]. Analytical Chemistry (S0003-2700), 1998, 70(9): 1870-1881.
  • 4Arulanandam S, Li D. Liquid transport in rectangular microchanncls by clectroosmotic pumping [J]. Colloids and Surfaces A (S0927- 7757), 2000, 161(1): 89-102.
  • 5Ermakov S V, Jacobson S C, Ramsey J M. Computer simulations of electrokinetic transport in microfabricated channel structure [J]. Analytical Chemistry (S0003-2700), 1998, 70(21): 4494-4505.
  • 6Erickson D, Li D. Influence of surface heterogeneity on electrokineticaUy driven microfluidic mixing [J]. Langmuir (S0743-7463), 2002, 18(5): 1883-1892.
  • 7Sinton D, Li D. Electroosmotic velocity profiles in microchannels [J]. Colloids and Surfaces A (S0927-7757), 2003, 222(1-3): 273-283.
  • 8Tian F, Li B, Kwok D Y. Simulation of eleclroosmotic flows in micro- and ranocharmels using a lattice Boltzmann model [J]. Journal of Computational and Theoretical Nanoscience (S 1546-1955), 2004, 1(4): 417-423.
  • 9Glatzel T, Litterst C, Cupelli C, et al. Computational fluid dynamics (CFD) software tools for micro fluidic applications-a case study [J]. Computers & Fluids (S0045-7930), 2008, 37(3): 218-235.
  • 10Jackson J D.经典电动力学[M].第3版(英文影印版).北京:高等教育出版社,2005.

二级参考文献55

  • 1[1]Gad-el-Hak Mohamed. The fluid mechanics of microdevices-The Freeman Scholar Lecture. Journal of Fluids Engineering. 1999, 121:5~33
  • 2[2]Ho C M, Tai Y C. Micro-Electro-Mechanical systems (MEMS) and fluid flows. Annual Review of Fluid Mechanics,998, 30:579~612
  • 3[3]Freemantle M. Downsizing chemistry. C & EN, 1999, 77(8): 27~36
  • 4[4]Papautsky I, Brazzle J, Ameel T, Frazier A B. Laminar fluid behavior in microchannels using micropolar fluid theory. Sensors and Actuators A: Physical, 1999, 73(1-2): 101~108
  • 5[5]Jiang X N, Huang X Y, Liu C Y, Zhou Z Y, Li Y, Yang Y. Micronozzle/diffuser flow and its application in micro valveless pumps. Sensors and Actuators A: Physical, 1998, 70(1-2): 81~87
  • 6[6]Pfahler J, Harley J C, Bau H, Zemel J N. Gas and liquid flow in small channels. ASME-DSC, 1991, 32:49~60
  • 7[7]Gau H, Herminghaus S, Lenz P, Lipowsky R. Liquid morphologies on structured surfaces: from microchannels to microchips. Science, 1999, 283:46~49
  • 8[8]Grunze M. Driven liquids. Science, 1999, 283:41~42
  • 9[9]Gallardo B S, Gupta V K, Eagerton F D, Jong L I, Craig V S, Shah R R, Abbott N L. Electrochemical principles for active control of liquids on submillimeter scales. Science, 1999, 283:57~60
  • 10[10]Chaudhury M K, Whitesides G M. How to make water run uphill. Science, 1992, 256:1539~1541

共引文献46

同被引文献37

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部