期刊文献+

杂波环境下基于meanshift的多目标数据关联 被引量:3

Data Association for Multiple Targets Based on MeanShift in Clutter
下载PDF
导出
摘要 针对杂波背景下多目标的数据关联问题,提出了一种基于meanshift的多目标数据关联算法。该算法首次将meanshift用于多目标的数据关联问题中,首先对接收到的量测数据通过meanshift算法进行聚类处理,然后结合最近邻思想完成量测-航迹的关联,在目标密集或交叉的情况下,引入关联度的概念,与PDA相比,在提高关联精度的同时,也降低了计算量。蒙特卡罗仿真结果验证了该算法的可行性和有效性。 A new data association algorithm based on meanshifl for multiple targets in clutter was proposed. The meanshift method was applied firstly to data association for multiple targets. The proposed algorithm firstly classifies the received measurements, and then combines the nearest neighbor method to carry out the measurement-track association. By introducing the conception of association degree, association is exactly realized when targets are closed or crossing. Comparing with PDA algorithm, the precision of association can be improved while decreasing the computation burden. The Monte Carlo simulation results verify the feasibility and validity of the proposed algorithm.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第11期3351-3355,共5页 Journal of System Simulation
基金 国家高技术研究发展计划(863计划)(2007AA12Z138593) 国家自然科学基金(60703108)
关键词 多目标数据关联 杂波 MEANSHIFT 关联度 data association for multiple targets clutter meanshift association degree
  • 相关文献

参考文献8

  • 1Bar-Shalom Y. Multitarget-Multisensor Tracking: Advanced Applications [M]. Norwood MA, USA: Artech House, 1990: 65-68.
  • 2Thagalingam Kirubarjan, Yaakov Bar-Shalom. Probabilistic Data Association Techniques for Target Tracking in Clutter [J]. Proceedings of the IEEE (S0018-9219), 2004, 92(3): 536-557.
  • 3J A Roecker, G L Phillis. Suboptimal Joint Probabilistic Data Association [J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2): 510-517.
  • 4B Zhou, N K Bose. Multitarget Tracking in Clutter: Fast Algorithms for Data Association [J]. IEEE Transactions on Aeroapace and Electronic System (S0018-9251), 1993, 29(2): 352-363.
  • 5Dorin Comaniciu, Peter Meer. Mean Shift Analysis and Applications [C]//Proc. The seventh International Conference on Computer Vision, Kerkyra, Greece, 1999, 2: 1197-1203.
  • 6D Comaniciu, P Meer. Mean shift: A robust approach toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (SO 162-8828), 2002, 24(5): 603-619.
  • 7王杰贵,靳学明,罗景青.基于信息融合的机动多目标单站无源跟踪关键技术研究[J].系统仿真学报,2005,17(12):2983-2986. 被引量:8
  • 8叶佳,张建秋.基于mean-shift算法的目标跟踪方法[J].传感技术学报,2006,19(6):2621-2624. 被引量:3

二级参考文献13

  • 1李洪兴 汪群.工程模糊数学方法及应用[M].天津:天津科学技术出版社,1991.72-75.
  • 2D.J. Torrieri. Statistical Theory of Passive Location Systems [J].IEEE Trans. On AES, VOL. 20, 1984, 183-198.
  • 3L.G Taft. Target Localization from Beatings-Only Observations [J].IEEE Trans. On AES, 1997, 33: 2-10.
  • 4K Becker. Passive Location of Frequency-Agile Radars from Angle and Frequency Measurements [J]. IEEE Trans. On AES, 1999, 35(4):1129-1144.
  • 5J Llinas, E Waltz. Multisensor Data Fusion [M]. Artech House,Norwood, Massachusetts, 1990, 15-237.
  • 6Dorin Comaniciu,Peter Meer,Mean Shift Analysis and Applications[C] // Proceedings of the International Conference on Computer Vision,1999,2:1197.
  • 7Bar-Shalom Y,Li X,and Kirubarajan.Estimation with Application to Tracking and Navigation[M].New York:Wiley,2001.
  • 8Blackman S,and Popoli.Design and Analysis of Modern Tracking Systems[M].Boston:Arech House,1999.
  • 9Yanhua Ruan,Peter Willett,The Turbo PMHT[J].IEEE Transactions on Aerospace and Electronic Systems,October 2004,40(4).
  • 10Jeff A.Bilmes,A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models[C] // International Computer Science Institute Berkeley CA,94704 and Computer Science Division Department of Electrical Engineering and Computer Science U.C.Berkeley TR-97-021,April 1998.

共引文献9

同被引文献18

  • 1章毓晋.图像处理和分析[M].北京:清华大学出版社,1999..
  • 2周宏人,敬忠良,王培德.机动目标跟踪[M].北京:国防工业出版社,1991.
  • 3A M Aziz,M Tummlal, R Cristi. Fuzzy logic data correlation approach in multi-sensor multi-target tracking systems [ J ]. Signal Processing, 1999,76 ( 2 ) : 195 - 209.
  • 4Mourad Oussalch, Joris De Schutter. Hybrid fuzzy probabilistic data association filter and joint probabilistic data association filter[ J ]. Information Sciences, 2002,142 ( 2 ) : 195 - 226.
  • 5BAR-SHALOM Y,LI X R.Multitarget-multisensor tracking:principles and techniques[M].Storrs,CT:YBS Publishing,1995.
  • 6OUSSALAH M,de SCHUTTER J.Hybrid fuzzy probabilistic data association filter and joint probabilistic data association filter[J].Information Sciences,2002,142(1/2/3/4):195-226.
  • 7AOKI E H,KIENITZ K H.Suboptimal JPDA for tracking in the presence of clutter and missed detections[C]//Proceedings of the 2009 12th International Conference on Information Fusion.Piscataway:IEEE Press,2009:818-825.
  • 8VERMAAK J,GODSILL S J,PEREZ P.Monte Carlo filtering for multi target tracking and data association[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41(1):309-332.
  • 9CLARK D,VO B T,VO B N.Gaussian particle implementations of probability hypothesis density filters[C]//Proceedings of the 2007IEEE Aerospace Conference.Piscataway:IEEE Press,2007:1-11.
  • 10VO B N,MAW K.The Gaussian mixture probability hypothesis density filter[J].IEEE Transactions on Signal Processing,2006,54(11):4091-4104.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部