期刊文献+

基于局部层次化混合高斯模型的视频序列运动目标检测

The Moving Object Detection based on Local Hierarchical GMM
下载PDF
导出
摘要 在视频分析的过程中,背景建模和运动目标提取是一个非常重要的问题。混合高斯模型是进行背景建模常用的模型之一。但是单纯运用混合高斯模型进行运动目标提取的效果并不是非常理想。本文提出了一种自上而下的局部层次化混合高斯模型,该算法首先确定更新区域,然后在区域中运用分块的混合高斯模型和点像素混合高斯模型进行背景建模和目标提取。实验表明该方法具有较好的处理效果,同时也提高了处理的时间效率。 In the process of the video sequence analysis,the method of the background modeling and moving target detection is an important problem. The Gaussian Mixture Model(GMM) is one of the model which used frequently. But the effect is not so ideal if we use the GMM only to detect the moving targets. A top-to-bottom Local Hierarchical GMM (LHGMM) is proposed in this paper, firstly the updating area is found, then in the area we use the block-based GMM and the pixel-based GMM to update the background and to detect the moving target. The experiment results show that the dispose effects are fair,and the dispose efficiency is improved at the same time.
出处 《信号处理》 CSCD 北大核心 2009年第5期820-824,共5页 Journal of Signal Processing
基金 装备预研项目(9140C8002010705)
关键词 混合高斯模型 背景更新 目标检测 Gaussian Mixture Model(GMM) background updating target detection
  • 相关文献

参考文献14

  • 1M. Spirito, C. S. Regazzoni, and L. Marcenaro. Automatic detection of dangerous events for underground surveillance [ J ]. IEEE Conference on Advanced Video and Signal Based Surveillance,2005,195-200.
  • 2A. G. Hauptmann, J. Gao, and R. Yan, Automated analysis of nursing home observations, Pervasive Computing, IEEE, 2004,15-21.
  • 3Wren, C. R.. Pfinder: Real-time Tracking of the Human Body [ J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1997.19(7) :780-785.
  • 4A. Francois, G. G. Medioni. Adaptive color background modeling for real-time segmentation of video streams [ J ]. International Conf. on Imaging Science, Systems, and Technology, 1999,227-232.
  • 5I. Haritaoglu, D. Harwood, and L. S. Davis. W4: Realtime surveillance of people and their activities [ J ]. IEEE Trans. on PAMI ,2000 ,22 ( 8 ) : 809- g30.
  • 6Y. Zhou, H. Tao. A background layer model for object tracking through occlusion [ J ]. Proceedings of the 9th IEEE international Conf. on Computer vision, 2003 ( 2 ) : 1079-1085.
  • 7Chris Stauffer, W. E. L Grimson. Learning pattern of activity using real-time tacking [ J ]. IEEE Trans. on PAMI, 2000,22( 8 ) :246-252.
  • 8P. W. Power, J. A. Schoonees. Understanding background mixture models for foreground segmentation. Proceedings of image and vision computing, New Zealand ,2002,267-271.
  • 9李斌,钟润添,王先基,庄镇泉.一种基于递增估计GMM的连续优化算法[J].计算机学报,2007,30(6):979-985. 被引量:9
  • 10Sheng-Yan Yang and Chiou-Ting Hsu. Background modeling from GMM likelihood combined with spatial and color coherency. 2006 IEEE International Conference on ICIP 2006:2801-2803.

二级参考文献23

  • 1Mühlenbein H,Paaβ G.From recombination of genes to the estimation of distributions I.Binary parameters//Proceedings of the 5th Parallel Problem Solving from Nature (PPSN V).Amsterdam,The Netherlands,1998:178
  • 2Pelikan M,Goldberg D E,Lobo F.A survey of optimization by building and using probabilistic models.IlliGAL Technical Report 99018,1999
  • 3Mühlenbein H.The equation for response to selection and its use for prediction.Evolutionary Computation,1997,5 (3):303
  • 4Pelikan M,Mühlenbein H.The bivariate marginal distribution algorithm//Proceedings of the Soft Computing-Engineering Design and Manufacturing.London,1999:521
  • 5Pelikan M,Goldberg D E,Cantú-Paz E.BOA:The Bayesian optimization algorithm//Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99).Orlando FL:Morgan Kaufmann Publishers,1999,Ⅰ:525
  • 6Harik G R,Lobo F G,Goldberg D E.The compact genetic algorithm.IEEE Transactions on Evolutionary Computation,1999,3(4):287
  • 7de Boner J S,Isbell C L,Viola P.MIMIC:Finding optima by estimating probability densities//Proceedings of the Neural Information Processing Systems.Cambridge,MA:The MIT Press,1997,9:424
  • 8Sebag M,Ducoulombier A.Extending population-based incremental learning to continuous search spaces//Proceedings of the 5th Parallel Problem Solving from Nature (PPSN V).Amsterdam,The Netherlands,1998:418
  • 9Rudlof S,Koppen M.Stochastic hill climbing by vectors of normal distributions/ /Proceedings of the 1st Online Workshop on Soft Computing (WSC1).Nagoya,Japan,1996
  • 10Servet I,Trave-Massuyes L,Stern D.Telephone network traffic overloading diagnosis and evolutionary computation techniques//Proceedings of the 3rd European Conference on Artificial Evolution (AE'97).Nimes,France,1997:137

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部