摘要
给出了一种利用小波为分析工具,基于织物采样图像进行疵点检测的新方法。首先对织物疵点图片进行了奇偶行列采样抽取,得到奇偶两幅子图像并使得图像的总数据变为原来的二分之一,然后再进行小波变换。在进行小波变换时,采用邻域插值,使得紧支撑小波滤波器的系数序列得到缩短,并可以由原来的滤波器系数计算出缩短后的滤波器系数。实验结果表明该方法可以在保证检测效果准确性的同时,大幅减少数据计算量、提升检测速度。
A new method of fabric defect detection using the structure character of fabric image and the wavelet transform is provided. The image is first sampled and extracted according to odd and even lines or columns. The image is decomposed into odd and even sub- images. This step reduces the total data of the image by half. Then, the two sub-images are analyzed by the wavelet transform. When being analyzed, the modulus serial of wavelet filters is shortened because of using the neighborhood interpolation, and the shortened modulus of filters can be calculated from the original modulus. The experimental results show that this method improves the speed of the defect detection while keeping the accuracy of the defect detection.
出处
《计算机工程与设计》
CSCD
北大核心
2009年第10期2510-2512,共3页
Computer Engineering and Design
基金
浙江省自然科学基金项目(Y106207)
关键词
小波变换
采样
小波构造
织物疵点
检测
wavelet transform
sample
structure of wavelet
woven fabric defect
detection