期刊文献+

基于遗传算法的贝叶斯网络模型研究 被引量:6

Research of Bayesian network model based on genetic algorithm
下载PDF
导出
摘要 目前贝叶斯网络缺乏支持结构建立、参数学习、知识推理的一致算法,使知识建立与应用过程无法联接。针对这一现状,通过设计适合于贝叶斯网络学习的遗传算法编码方式、具有调整策略的交叉与变异算子,能进行推理误差反馈的适应函数,实现样本支持下的结构确定、参数学习、推理检验、反馈修正的贝叶斯网络全过程建立。实验结果表明,新算法不仅同步优化网络结构与参数,且可以自适应推理误差的学习修正,有着更满意的知识推理正确率。 The research of Bayesian network (BN) is still lacked of algorithms which can implement the consistence of structure building, parameter learning and knowledge inference, so that knowledge construction and application are out of association and verification. A novel algorithm is proposed, which designs a new BN learning encodement, crossover and mutation operators with adjust strategies and the fitness funetion with inferential error feedback, implements BN building in all processes ofstructure building, parameterlearning, knowledge inference and feedback revise with samples supported. Results show that the new approach can not only optimize the structure and parameters learning synchronously, but also revise inferential error adaptively, and has more satisfying and accurate inference result.
作者 陈望宇 廖芹
出处 《计算机工程与设计》 CSCD 北大核心 2009年第11期2756-2759,2799,共5页 Computer Engineering and Design
关键词 贝叶斯网络 结构学习 参数学习 知识推理 遗传算法 Bayesian network structure leaning parameter learning knowledge construction and inference genetic algorithm
  • 相关文献

参考文献6

  • 1玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 2玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 3冀俊忠,阎静,刘椿年.基于I-B&B-MDL的贝叶斯网结构学习改进算法[J].北京工业大学学报,2006,32(5):436-441. 被引量:5
  • 4Jeo SUZUKI.Learning Bayesian belief networks based on the minimum description length principle: basic properties [J].IEICE Trans on Fundamentals, 1999,E82-A(10):2237-2245.
  • 5Ian H Witten,Eibe Frank.数据挖掘实用机器学习技术[M].董琳,邱泉,于晓峰,等译.北京:机械工业出版社,2006:286.
  • 6UCI machine learning database[DB/OL], http://mlearn.ies.uci. edu/databases/.

二级参考文献6

  • 1FRIEDMAN N,NACHMAN I,PEER D.Learning Bayesian network structures from massive datasets:the sparse candidate algorithm[C]//DUBIOS H,LASKEY K.The Proceedings of The Fifteenth Conference on Uncertainty in Artificial Intelligence.San Francisco,CA:Morgan Kaufmann,1999:206-215.
  • 2WONG M L,LEE S Y,LEUNG K S.A hybrid approach to discover bayesian networks from databases using evolutionary programming[C]//The Proceedings of IEEE International Conference on Data Mining ICDM.Maebashi,Japan:IEEE Press,2002:498-505.
  • 3LUIS M,CAMPOS D,HUETE J.A new approach for learning belief networks using independence criteria[J].International Journal of Approximate Reasoning,2000,24(1):11-37.
  • 4SUZUKI J.Learning Bayesian belief networks based on the minimum description length principle:an efficient algorithm using the B&B technique[J].IEICE Transactions on Information and Systems,1999,E82-D(2):356-367.
  • 5CHENG J,GREINER R,KELLY J,et al.Learning belief networks from data:an information theory based approach[J].Artificial Intelligence,2002,137(2):43-90.
  • 6羌磊,肖田元,乔桂秀.一种改进的Bayesian网络结构学习算法[J].计算机研究与发展,2002,39(10):1221-1226. 被引量:14

共引文献689

同被引文献60

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部