期刊文献+

改进的支持向量机分类算法 被引量:2

Improved algorithm for support vector machines
下载PDF
导出
摘要 在研究了标准SVM分类算法后,本文提出了一种快速的支持向量机分类方法。该方法通过解决两类相关的SVM问题,找到两个非平行的平面,其中每个平面靠近其相应的类样本点,远离另一类样本点,最后通过这两个平面找到一个将两类样本分开的最优平面。在处理非线性情况下,引入一种快速核函数分类方法。使用该算法可以使分类的速度得到很大提高,针对实际数据集的实验表明了该算法的有效性。 A new effective approach to optimize the SVM classifier is proposed after the research on SVM classifier is researched. By solving two related SVM-type problems, each of which is much smaller, find two unparallel planes, then gain one plane through the two planes. Effectiveness of this algorithm is much faster than the standard SVM classification method. Numerical experiments demonstrate the effectiveness of the method over convertional methods.
作者 刘莉 陈秀宏
出处 《计算机工程与设计》 CSCD 北大核心 2009年第11期2763-2765,共3页 Computer Engineering and Design
关键词 支持向量机 分类 特征向量 非平行 核函数 support vectormachines classification support vectors nonparallel, kernel
  • 相关文献

参考文献12

二级参考文献44

  • 1孙建涛,郭崇慧,陆玉昌,石纯一.多项式核支持向量机文本分类器泛化性能分析[J].计算机研究与发展,2004,41(8):1321-1326. 被引量:16
  • 2杨路明,李丽.一种加速大规模SVM训练的新思路[J].微机发展,2004,14(12):136-138. 被引量:6
  • 3唐发明,王仲东,陈绵云.一种新的二叉树多类支持向量机算法[J].计算机工程与应用,2005,41(7):24-26. 被引量:50
  • 4Boser B,Guyon I,Vapnik V.A training algorithm for optimal margin classifiers[A].Haussler D Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory[C].ACM Press,1992.144-152.
  • 5Joachims T.Making large-scale support vector machine learning practical[A].Scholkopf B,Burges C,Smola A.Advances in Kernel Methods-Support Vector Learning[C].Cambridge,MA:MIT Press,1999.169-184.
  • 6Platt J.Fast training of support vector machines using sequential minimal optimization[A].ScholkopfB,Burges C,Smola A.Advances in Kernel Methods-Support Vector Learning[C].Cambridge,MA:MIT Press,1999.185-208.
  • 7Keerthi S,Gilbert E.Convergence of a generalized SMO algorithm for SVM classifier design[J].Machine Learning,2002,46(1/3):351-360.
  • 8Aas L, Eikvil L. Text Categorisation.. A Survey. Technical Report, NR94I, Norwegian Computing Center, Oslo, Norway,1999.
  • 9Vapnik V N. The Nature of Statistical Learning Theory. New York, USA:Springer-Verlag, 1995.
  • 10Joachims T. Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In: Proc of the 10th European Conference on Machine Learning. Chemnitz,Germany, 1998, 137-142.

共引文献75

同被引文献20

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部