期刊文献+

基于BFM算法的空间有形目标识别方法 被引量:3

Recognitive method of space visible objects based on BFM algorithm
下载PDF
导出
摘要 为了对具有复杂边缘的目标进行更准确的检测识别,提出了一种基于边界片段模板(boundary frag-ment model)训练模式的目标识别方法。方法首先提取目标的边界片段组成弱分类器,然后使用AdaBoost算法将它们提升训练成为强分类器,并用其进行检测和识别目标。仿真实验表明,该方法对有形目标,特别是对具有复杂边缘的空间有形目标有较好的识别效果。 For the purpose of accurately detecting and recognizing objects containing complex edges, an object recognitive method is proposed based on a boundary fragment training model. Firstly, the method forms a weak classifier by extracting edge segments, and then the obtained weak classifier is further trained into a strong one hy using an AdaBoost algorithm and is used to detect and recognize space objects. The simulation experi- ments dedicate that the method has an accurate result for detecting visible space objects, especially for the objects with complex edges.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第5期1075-1077,共3页 Systems Engineering and Electronics
关键词 空间有形目标检测与识别 ADABOOST算法 边界片段模板 弱分类器与强分类器 space objects detection and recognition AdaBoost algorithm boundary fragment model weak and strong classifiers
  • 相关文献

参考文献6

  • 1Opeh A, Pinz A, Zisserman A. A boundary fragment model for object detection[C]//ECCV, 2006.
  • 2Xiangrong Chen, Yuille Alan L. AdaBoost learning for detecting and reading text in city scenes[C]//CVPR. 2004.
  • 3Agarwal S, Awan A, Roth D. Learning to detect objects in ima ges via a sparse, part-based representation[C]// IEEE PAMI. 2004.
  • 4Bar-Hillel A, Hertz T, Weinshall D. Object class recognition by boosting a part-based model[C]//CVPR, 2005.
  • 5Gunilla Borgefors. Hierarchical chamfer matching: a parametric edge matching algorithm[J]. IEEE Trans. on PAMI, 10(6) 849-865, 1988.
  • 6Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis[C]//PAMI, 2002.

同被引文献45

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部