期刊文献+

一类不确定时滞非线性系统的H∞鲁棒镇定 被引量:2

H-infinity robust stabilization for a class of uncertain time-delay nonlinear systems
下载PDF
导出
摘要 利用混杂状态反馈策略研究一类不确定时滞非线性系统的鲁棒H∞镇定问题。首先,当控制器增益矩阵均已知时,利用单Lyapunov函数法和凸组合技术,给出了闭环非线性切换系统具有鲁棒H∞性能的充分条件并设计出相应切换律。然后,当控制器增益矩阵均未知时,利用多Lyapunov函数法,设计了控制器及相应的切换策略,使闭环非线性切换系统是鲁棒H∞渐近稳定的。 The problem of H infinity robust stabilization for a class of uncertain time-delay nonlinear systems is investigated by using a hybrid state feedback method. First, when the gain matrices of controllers are all known, by using the single Lyapunov function method and convex combination technique, the sufficient condi tions of closed-loop switched nonlinear systems with robust H infinity performance are derived and the corre sponding switching laws are designed. Then, when the gain matrices of controllers are unknown, by employing muhi-Lyapunov function method, the controllers and the switching laws are designed, which guarantees that the closed loop switched nonlinear system is robust H infinity asymptotically stable.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第5期1167-1171,共5页 Systems Engineering and Electronics
基金 天津市高等学校科技发展基金资助课题(20051527)
关键词 鲁棒H∞控制 单LYAPUNOV函数 多LYAPUNOV函数 凸组合 robust H-infinity control single Lyapunov function multi Lyapunov function convex combi nation
  • 相关文献

参考文献9

  • 1Gollu A. Varaiya P P. Hybrid dynamical systems[C]//Proc, of the 28^th IEEE Conf on Decision and Control. Tampa, Florida, USA: Omnipress, 1989:2708-2712.
  • 2Brockeet R W, Hybrid models for motion control systems[M].Boston, MA: Birkhauser, 1993: 212-215.
  • 3Gershwin S B. Hierarchical flow control:a framework for scheduling discrete events in manufacturing systems[J].Proceeding of IEEE, 1989, 77(1):195-209.
  • 4Jeon D, Tomizuka M. Learning hybrid force and position control of robot manipulators[J].IEEE Trans. on Robotics Automatic, 1996, 9(4): 423-431.
  • 5Lam H K, Fran H F, Peter K S. A switching controllers for uncertain nonlinear systems[J]. IEEE Control System Magazine, 2002, 22(1): 7-14.
  • 6Liberzon D, Morse A S. Basic problems in stability and design of switched systems[J]. IEEE Control System Magazine, 1999, 19(5) : 59 - 70.
  • 7任军,李春文.一类线性不确定时滞混杂系统的稳定性[J].信息与控制,2006,35(6):744-748. 被引量:1
  • 8Xie L, Carlos E, Souza D. Robust H. control for linear systems with norm-hounded time-varying uncertainty[J].IEEE Trans. on Automatic Control, 1992, 37 : 1188 - 1191.
  • 9Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[J]. IEEE Trans. on Automatic Control, 1998, 43(4) : 475 - 482.

二级参考文献8

  • 1Kiriakidis K,Bishop B E.On the analysis of uncertain hybrid systems with estimated-state feedback[A].Proceedings of the American Control Conference[C].Piscataway,NJ,USA:IEEE,2001.212~216.
  • 2Phat V N.New stabilization criteria for linear time-varying systems with state delay and norm-bounded uncertainties[J].IEEE Transactions on Automatic Control,2002,47 (12):2095 ~2098.
  • 3Esfahani S H,Moheimani S O R,Petersen I R.LMI approach tosuboptimal guaranteed cost control for uncertain time-delay systems[J].IEE Proceedings:Control Theory and Applications,1998,145(6):491 ~498.
  • 4Ge J H,Frank P M,Lin CF.Robust state feedback control for linear systems with state delay and parameter uncertainty[J].Automatica,1996,32(8):1183~1185.
  • 5Boyd S,Balakrishnan V,Feron E,et al.History of linear matrix inequalities in control theory[A].Proceedings of the 1994American Control Conference[C].Green Valley,AZ,USA:American Automatic Control Council,1994.31 ~ 34.
  • 6Phat V N.Robust stability and stabilizability of uncertain linear hybrid systems with state delays[J].IEEE Transactions on Circuits and Systems,2005,52(2):94 ~98.
  • 7Griffel D H.Linear Algebra and Its Applications[M].Chichester:Ellis Horwood,1989.
  • 8Branicky M S.Multiple Lyapunov functions and other analysis tool for switched and hybrid systems[J].IEEE Transactions on Automatic Control,1998,43(4):475 ~482.

同被引文献19

  • 1DE OLIVEIRA M C, GEROMEL J C, HSU I. LMI characteri- zation of structural and robust stability : The discrete-time case [J]. Linear Algebra Appl, 1999,296 : 27-38.
  • 2PHAT V N, NAM P T. Exponential stability and stabilization of uncertain linear time-varying systems using parameter de- pendent Lyapunov function[J]. Int J Control, 2007,80:1333- 1341.
  • 3PHAT V N, NIAMSUP P. A novel exponential stability condi- tion of hybrid neural networks with time-varying[J]. Vietnam J Math, 2010,38 : 341-351.
  • 4SUN Y J. Global stabilizability of uncertain systems with time- varying delays via dynamic observer-based output feedback[J]. Linear Algebra Appl, 2002,353 : 91-105.
  • 5DONG Y, LIU J, MEI S, et al. Stabilization for switched non- linear time-delay systems[J]. Nonlinear Analysis: Hybrid Sys- tems, 2011,5 : 78-88.
  • 6PHAT V N. Switched controller design for stabilization of non- linear hybrid systems with time-varying delays in state and control [J]. Journal of the Franklin Institute,2010,347: 195- 207.
  • 7KHALIL H K. Nonlinear Systems [M]. London: Prentice-Hall, 1996.
  • 8GU K, KHARITONOV V L, CHEN J. Stability of Time-Delay Systems[M]. Boston : Birkhauser, 2003.
  • 9KWON O M, PARK J H. On robust stability criterion for dy- namic systems with time-varying delays and nonlinear pertur- bations[J]. Appl Math Comput, 2008, 203 : 937-942.
  • 10KWON O M, PARK J H. Exponential stability for time-delay systems with interval time-varying delays and nonlinear per- turbations[J]. J Theory Optim Appl, 2008,139 (2) : 277 -293.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部