期刊文献+

基于差分进化算法的高斯混合模型参数估计 被引量:2

Paramater Estimation for Gaussian Mixture Model Based on Differential Evolution Algorithm
下载PDF
导出
摘要 EM算法用于高斯混合模型参数估计时,具有对初始值敏感、易于陷入局部极小等缺点。将差分进化算法引入高斯混合模型参数估计问题,提出一种基于差分进化算法的高斯混合模型参数估计方法。该方法直接对模型参数进行编码,待优化目标函数简单且物理意义明显,具有算法实现容易、运行效率高及收敛速度快等优点。实验结果表明,新方法具有很强的全局搜索能力,参数估计精度更高、更稳定。 EM Algorithm is sensitive to the initial value of parameters and apt to fall into local minima, while applied to Gaussian Mixture Model for parameter estimation. Proposes a Differential Evolution Algorithm based Gaussian Mixture Model to solve the parameter estimation problems in Gaussian Mixture Model. In the method, the parameters are directly encoded, thus the target function is simpler. And the algorithm is easy to perform and quick to converge. The tests show that, the new method is powerful in performing a global search and it gives more precise and steady parameter estimation.
作者 潘章明 曲政
出处 《现代计算机》 2009年第5期29-31,共3页 Modern Computer
关键词 高斯混合模型 差分进化算法 EM算法 参数估计 Gaussian Mixture Model Differential Evolution Algorithm EM Algorithm Parameter Estimation
  • 相关文献

参考文献6

二级参考文献121

共引文献346

同被引文献28

  • 1SUN Xinguu,CHEN Yu,WANG Aifei.Structure of an Embedded System Software Platform for Plate Recognition System based on Applied Mechanics[J].Advanced Materials Research,2012,460:266-270.
  • 2CHEN Q,SUN Q S,HENG P A,et al.Two-Stage Object Tracking Method Based on Kernel and Active Contour[C] //IEEE Transactions on Circuits and Systems for Video Technology,2010,20(4):605-609.
  • 3ZHOU Jindeng,WANG Xiaodan,SONG Heng.Research on the Unbiased Probability Estimation of Error-correcting Output Coding[J].Pattern Recognition,2011 (44):1552-1565.
  • 4ZHANG Yanjun,CHEN Yu.A Novel PCA-GRNN Flow Pattern Identification Algorithm For Electrical Resistance Tomography System[C] //2012 Second International Conference on Computer Science and Information Engineering,2012(1):249-254.
  • 5A P Dempster,N M laired,D B Rubi N.Maximum Likelihood from Incomplete Data Via the EM Algorithm[J].Journal of the Royal Statistical Society,1977,B (39):1-38.
  • 6MA Jinwen,FU Shuqun.On the Correct Convergence of the EM Algorithm for Gaussian Mixtures[J].Pattern Recognition,38(12):2602-2611.
  • 7JAMSHIDIAN,M.Jennrich,R.I.Conjugate Gradient Acceleration of the EM Algorithm[J].Journal of the American Statistical Association,1993,88:221-228.
  • 8CAO Jie,WU Zhang,WU Junjie,et al.Towards Informationtheoretic K-means Clustering for Image Indexing[J].Signal Processing,2012,13:35-39.
  • 9S.Kalyani,K.S.Swarup.Particle Swarm Optimization Based K-means Clustering Approach for Security Assessment in Power Systems[J].Expert Systems with Applications,2011,38 (9):10839-10846.
  • 10KIM T,LEE S,PAIK J.Combined Shape and Feature-Based Video Analysis and Its Application to Non-Rigid Object Tracking[J].IET Image Process,2011,5 (1):87-100.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部