期刊文献+

基于CPN网络的Deep Web数据语义标注

Semantic Annotation Based on CPN Network for Deep Web Data
下载PDF
导出
摘要 全面准确地标注Deep Web数据是实现Deep Web数据集成系统的关键问题,然而现有的DeepWeb数据语义标注方法还不能很好地解决这一问题.提出一种基于CPN网络的Deep Web数据语义标注方法,通过提取属性值的基本特征,采用CPN网络实现Deep Web数据语义标注.同时,采取了一种有效的方法准确获取Deep Web结果页面中的属性值,为语义标注奠定了良好的基础.与同类成果相比,基于CPN网络的Deep Web数据语义标注方法提高了语义标注的准确率及召回率. An overall and accurate annotation of Deep Web data is the key to Deep Web data integration system. However, the existing methods of semantic annotation are unavailable to solve the problem well. An approach to semantic annotation based on CPN network is proposed for Deep Web data. By extracting the basic features of attribute values, semantic annotation is implemented with CPN network. At the same time, an effective method is proposed to obtain the attribute values on Deep Web result pages, thus laying a sound foundation for semantic annotation. Experimental results showed that the approach to semantic annotation based on CPN network improves the accuracy and recall.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第6期794-797,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60773218) 辽宁省科学技术基金资助项目(20072031)
关键词 DEEP WEB数据集成 语义标注 CPN网络 特征选取 分隔符序列 Deep Web data integration semantic annotation CPN network feature selection separator sequence
  • 相关文献

参考文献9

  • 1Kabra G, Zhang Z, Chang K C. Dewex: an exploration facility for enabling the Deep Web integration [ C ]//Proc of 23rd International Conference on Data Engineering. Istanbul, 2007:1511 - 1512.
  • 2Mukherjee S, Yang G Z, Ramakrishnan I V. Automatic annotation of content-rich HTML documents: structural and semantic analysis[ C]//Proc of the 2nd International Semantic Web Conference. Sanibel Island: Springer, 2003 : 533 - 549.
  • 3廖述梅,徐升华,陶皖.带模板的结构化HTML文档深度标注框架[J].清华大学学报(自然科学版),2006,46(z1):936-941. 被引量:2
  • 4袁柳,李战怀,陈世亮.基于本体的Deep Web数据标注[J].软件学报,2008,19(2):237-245. 被引量:28
  • 5Arlotta L, Crescenzi V, Mecca G, et al. Automatic annotation of data extracted from large Web sites [ C ]//Proc of the 6th International Workshop on Web and Databases. San Diego: ACM Press, 2003 : 7 - 12.
  • 6Wang J Y, Lochovsky F. Data extraction and label assignment for Web databases [ C] //Proc of the 12th International Conference on World Wide Web. San Diego: ACM Press, 2003 : 187 - 196.
  • 7Lu Y Y, He H, Zhao H K, et al. Annotating structured data of the deep Web [ C ] // Proc of the 23rd International Conference on Data Engineering. Istanbul, 2007 : 376 - 385.
  • 8Altigran S, Denilson B, Joao M B, et al. Labeling data extracted from the Web [ C ]//Proc of the 6th International Conference on Ontologies, DataBases, and Applications of Semantics. Sanibel Island: Springer, 2007 : 1099 - 1116.
  • 9Nielsen R H. Counterpropagation networks [ J ]. Applied Optics, 1987,26(23) :49 - 79.

二级参考文献29

  • 1[12]McGuinness D L,Harmelen F.OWL Web Ontology Language (OWL) Overview[S].W3C Recommendation,2004.
  • 2[13]Hors A L,Hegaret P L,Wood L.DOM Document Object Model (DOM) Level 3 Core Specification[S].W3C Recommendation,2004.
  • 3[14]Laender A,Ribeiro-Neto B,Silva A,et al.A brief survey of Web data extraction tools[J].ACM SIGMOD Record,2002,31(2):84-93.
  • 4[15]Sarawagi S.Automation in Information Extraction and Data Integration[DB/CD].VLDB 2002.
  • 5[16]Crescenzi V,Mecca G,Merialdo P.Roadrunner:Towards automatic data extraction from large Web sites[A].Proc 27th International Conference on Very Large Data Bases (VLDB 2001)[C].Roma,Italy:Morgan Kaufman,2001.109-118.
  • 6[17]MENG Xiaofeng,WANG Haiyan,HU Dongdong,et al.A supervised visual wrapper generatior for Web-data extraction[A].Proc 27th International Computer Software and Application Conference (COMPSAC 2003)[C].Dallas,TX,USA:IEEE,2003.657-662.
  • 7[18]Baumgartner R,Flesca S,Gottlob G.Visual Web information extraction with Lixto[A].Proc 27th International Conference on Very Large Data Bases (VLDB 2001)[C].Roma,Italy:Morgan Kaufman,2001.119-128.
  • 8[19]LIU Ling,PU Calton,HAN Wei.XWRAP:An XML-enabled wrapper construction system for Web information sources[A].Proc 16th International Conference on Data Engineering (ICDE 2000)[C].San Diego,California,USA:IEEE,2000.611-621.
  • 9[20]Kushmeric N.Wrapper induction:Efficiency and expressiveness[J].Artificial Intelligence,2000,118(12):15-68.
  • 10[21]Cohen W,Hurst M,Jensen L.A flexible learning system for wrapping tables and lists in HTML documents[A].Proc 11th International World Wide Web Conference (WWW2002)[C].Honolulu,Hawaii,USA:ACM Press,2002.232-241.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部