期刊文献+

催化湿式氧化法对模拟印染废水的色度去除 被引量:9

Decolorization of Simulated Printing and Dyeing Effluents with CWAO Technology
下载PDF
导出
摘要 为了研究催化湿式氧化(CWAO)技术对模拟印染废水色度去除的影响,以色度值为300 000的亚甲蓝水溶液作模拟印染废水,以m(Cu2+)/m(Fe2+)为1∶1的Cu1Fe1作均相催化剂,考察了催化剂用量、氧分压、反应温度、进水pH值及反应时间对水样脱色的影响.结果表明:水样脱色率随催化剂用量、氧分压、反应温度的提高以及反应时间的延长而提高;进水pH值存在极值点,水样脱色率在酸性条件下随进水pH值的降低而提高,而碱性条件下随进水pH值的升高而提高;在优化的工艺条件下,反应60 min时水样脱色率达到99.99%. In order to study on the effect of simulated printing and dyeing effluents decolorization with catalytic wet air oxidation (CWAO) technology, methylene blue aqueous solution with chroma of 300 000 was chosen as simulated printing and dyeing effluents, and CulFel with rn (Cu^2+ ) : m ( Fe^2+ ) = 1 : 1 was used as homogeneous catalyst, then the effect of sample decolorization was investigated on catalyst dosage, oxygen partial pressure, reaction temperature, pH of influent and the reaction time. The results show that the decolorization rates of sample increases with the increase in dosage of catalyst, oxygen partial pressure, reaction temperature and prolonged reaction time. However, there is an extreme point of pH value of influent, and the decolorization rates increases with the decrease in the pH value under acidic conditions, and with the increase in the pH value under alkaline conditions. At the optimized technics conditions, the decolorization rate of sample is up to 99.99 % after such a reaction for 60 min.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第6期881-884,共4页 Journal of Northeastern University(Natural Science)
基金 广东省教育厅2008年度高校学科建设专项基金资助项目 广东省潮州市科技局项目(2008S20) 沈阳市科技攻关项目(1053095-4-05)
关键词 催化剂 湿式氧化 印染废水 亚甲蓝 脱色 catalyst wet oxidation printing and dyeing effluent methylene blue decolorization
  • 相关文献

参考文献10

  • 1Snell F D. Treatment of waste from dyeing and printing[J ]. Ind Eng Chem, 1994,26(5) :580 - 581.
  • 2Ciardetti G, Ranieri N. The treatment and reuse of wastewater in the textile industry by means of ozonation and electrofloceulation[J]. War Res, 2001,35(2) :567- 572.
  • 3Mishra V S, Mahajani V V, Joshi J B. Wet air oxidation [J]. Ind Eng Chem Res, 1995,34(1):2-48.
  • 4Sales F G, Maranhao L C. Kinetic evaluation and modeling of lignin catalytic wet oxidation to selective production of aromatic aldehydes[J]. Ind Eng Chem Res , 2006,45(20) : 6627 - 6631.
  • 5Eyer S, Bhargava S, Tardio J, et al. Selective organic removal from the alumina industrial liquor: wet oxidation and catalytic wet oxidation of disodium malonate [ J ]. Ind Eng Chem Res, 2002,41(5) :1166 - 1170.
  • 6Santos A, Yustos P, Durban B, et al. Catalytic wet oxidation of phenol: kinetics of phenol uptake[ J ]. Environ Sci Technol, 2001,35 (13) : 2828 - 2835.
  • 7Zhang Y L, Hu X M, Xing C, et al. Influence of operational factors of WAO technology on degradation of methylthionine chloride watery mlution [ J ]. Journal of Ecolechnology Research, 2006,12( 1/2) :46 - 48.
  • 8Zhang Y L, Hu X M. Research on non-homogeneous phase CWAO technology to decompose methylthionine ehloride[J ]. Journal of Ecotechnology Research, 2006, 12 ( 1/2 ) : 49 - 52.
  • 9Kolaczkowski S T, Plucinski L G, Beltran F J, et al. Wet air oxidation: a river of process technologies and aspects in reactor design[ J ]. Chem Eng, 1999,73 (1) : 143 - 146.
  • 10原田吉明,涂锋.一种先进的废水处理方法——催化湿式氧化工艺[J].国外环境科学技术,1990(1):46-53. 被引量:1

同被引文献185

引证文献9

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部