期刊文献+

变次数B-样条曲线 被引量:6

Multi-degree B-spline curves
下载PDF
导出
摘要 变次数B-样条(MD-样条)曲线是在不同区间有不同次数的特殊B-样条曲线.为了适应CAD造型系统的发展,研究了最大变化次数小于3的MD-样条曲线.这类MD-样条继承了多项式B-样条的变差缩减性、保凸性等大多数性质,并具有退化性、嵌入节点等独特性质.整个MD-样条曲线至少是Cn-1连续的,这里n为整个曲线段的最小次数.研究了MD-样条与B-样条的关系,可以通过嵌入节点将MD-样条转化为B-样条,同时通过MD-样条能够将B-样条的升阶看成是几何割角的过程.变次数B-样条能够在保持理想精度的条件下,有效地减少控制顶点和节点向量的数目,有利于几何设计和CAD系统的数据传输. Multi-degree B-spline (MD-spline) curves are special B-spline curves with various degrees on different intervals, thus adapted to the development of CAD modeling system. MD-spline curves whose maximal variational degree was lower than three were investigated. This kind of MD-splines inherit most properties of polynomial B-splines, such as variation diminishing property, convexity preserving property, etc,and enjoy other advantageous properties for modeling, such as degeneration property, knot insertion property. Also the whole MD-spline curve is at least C^-1 , where n is the smallest degree of whole curve segments. In addition, the relation between MD-spline and B-spline was presented. MD-spline can be transformed into B-spline through knot insertion, simultaneously the degree elevation of B-spline can be interpreted as corner cutting process through MD-spline. MD-splines can effeetively spline curves' control points and knot vectors while keeping the desired accuracy, geometric design and data transmission of CAD system. reduce the numbers of which are very good for
作者 朱平 汪国昭
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第5期789-795,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60773179) 国家"973"基础研究发展规划资助项目(2004CB318000)
关键词 昏样条 B-样条基函数 MD-样条 升阶 收敛定理 B-spline B-spline basis function MD-spline degree elevation convergence theorem
  • 相关文献

参考文献15

  • 1BARRY J. Discrete beta-splines [J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4) : 137 - 144.
  • 2王文涛,汪国昭.带形状参数的双曲多项式均匀B样条[J].软件学报,2005,16(4):625-633. 被引量:43
  • 3WANG Guo-zhao, CHEN Qin-yu, ZHOU Ming-hua. NUAT B-spline curves [J]. Computer Aided Geometric Design, 2004, 21(2): 193-205.
  • 4LU Yong-gang, WANG Guo-zhao, YANG Xun-nian. Uniform hyperbolic polynomial B-spline curves [J]. Computer Aided Geometric Design, 2002, 19(6) :379 - 393.
  • 5KAKLIS P D, PANDELIS D G. Convexity-preserving polynomial splines of non-uniform degree [J].IMA Journal of Numerical Analysis, 1990, 10(2) : 223 - 234.
  • 6KAKLIS P D, SAPIDIS N S. Convexity preserving interpolatory parametric splines of non-uniform polynomial degree [J]. Computer Aided Geometric Design, 1995, 12(1): 1-26.
  • 7COSTANTINI P. Variable degree polynomial splines [M]. LEMEAUTE A, RABUT C, SCHUMAKER L L. Curves and surfaces with application in CAGD. Nashville: Vanderbilt University Press, 1997: 85- 94.
  • 8COSTANTINI P. Curve and surface construction using variable degree polynomial splines [J].Computer Aided Geometric Design, 2000, 17(5): 419-446.
  • 9MAZURE M L. Quasi-Chebyshev splines with connection matrics: application to variable degree polynomial splines [J].Computer Aided Geometric Design, 2001, 18 (3) : 287 - 298.
  • 10THOMAS W S, ZHENG Jian-min, SONG Xiao-wen. Knot intervals and multi-degree splines [J]. Computer Aided Geometric Design, 2003, 20(7): 455 -468.

二级参考文献7

  • 1Lü YG, Wang GZ, Yang XN. Uniform trigonometric polynomial B-spline curves. Science in China (Series F), 2002,45(5):335-343.
  • 2Zhang JW. C-Curves: An extension of cubic curves. Computer Aided Geometric Design, 1996,13(9):199-217.
  • 3Zhang JW. Two different forms of C-B-Splines. Computer Aided Geometric Design, 1997,14(1):31-41.
  • 4Farin G. Curves and surfaces for computer aided geometric design. New York: Academic Press, 1988.
  • 5Piegl L. Modifying the shape of rational B-splines, part1: Surfaces. Computer Aided Design, 1989,21(9):538-546.
  • 6Han XL. Quadratic trigonometric polynomial curves with a shape parameter. Computer Aided Geometric Design, 2002,19(7):503-512.
  • 7Barsky BA. Computer graphics and geometric modeling using beta-splines. New York: Springer-Verlag, 1988.

共引文献42

同被引文献31

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部