期刊文献+

神华配煤孔隙分形对燃烧特性的影响 被引量:6

Effects of pore fractal structures on combustion of Shenhua coal blends
下载PDF
导出
摘要 利用氮气吸附仪、沉降炉、扫描电镜(SEM)和X-射线能谱仪(EDS)研究了动力配煤的孔隙分形结构对着火和燃烧特性的影响.对神华煤分别与准格尔煤和澳洲煤组成的配煤研究表明,配煤孔隙分形维数随单煤比例呈现出单调变化规律,并且与比表面积和比孔容积的变化规律基本一致.当神华配煤的分形维数由2.451增加到2.482和2.532时,着火温度由783℃降低到587℃和462℃,飞灰中碳的质量分数由3.62%减少到2.83%和1.83%,说明配煤的分形维数越大则越容易着火和燃尽.随着准格尔煤比例增加和神华煤比例减少,燃烧渣样中硅铝质量比减小且灰熔点提高,导致配煤的结渣程度明显减轻. The nitrogen adsorption instrument, drop tube furnace, scanning electronic microscope (SEM) and X-ray energy dispersive spetrometer (EDS) were used to study the effects of pore fraetal structures on combustion of coal blends. The results showed that the pore fractal dimensions of Shenhua coal blends monotonously change with the blend ratio of a parent coal, which is consistent with the specific surface areas and pore volumes. When the pore fractal dimension of the coal blends increases from 2. 451 to 2. 482 and 2. 532, the ignition temperature decreases from 783 ℃ to 587 ℃ and 462℃, while the unburned carbon mass fraction in the fly ash decreases from 3.62% to 2.83% and 1.83%. It implies that the coal blends with larger pore fractal dimension are easier to ignite and burn out. When the Zhungeer coal content increases and the Shenhua coal content decreases in the coal blends, the ratio of SiO2 to Al2O3 in the combustion slag of coal blends decreases and the ash softening temperature increases, which results in a lower slagging degree.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第5期920-925,共6页 Journal of Zhejiang University:Engineering Science
基金 国家科技支撑计划资助项目(2006BAA01B06) 国家"973"重点基础研究发展规划资助项目(2004CB217701)
关键词 配煤 分形 神华煤 孔隙 燃烧 coal blends fractal Shenhua coal porosity combustion
  • 相关文献

参考文献16

  • 1SU S, POHL J H, HOLCOMBE D, et al. Techniques to determine ignition, flame stability and burnout of blended coals in p.f. power station boilers [J].Progress in Energy and Combustion Science, 2001, 27(1): 75 - 98.
  • 2BISWAS S, CHOUDHURY N, SARKAR P, et al. Studies on the combustion behaviour of blends of Indian coals by TGA and drop tube furnace [J]. Fuel Processing Technology, 2006, 87(3) : 191 - 199.
  • 3HELLE S, GORDON A. ALFARO G, et al. Coal blend combustion., link between unburnt carbon in fly ashes and maceral composition [J]. Fuel Processing Technology, 2003, 80(3): 209-223.
  • 4BACKREEDY R I, JONES J M, MA L, et al. Prediction of unburned carbon and NO, in a tangentially fired power station using single coals and blends [J]. Fuel, 2005, 84(17): 2196-2203.
  • 5RUSHDI A, SHARMA A, GUPTA R. An experimental study of the effect of coal blending on ash deposition [J].Fuel, 2004, 83(4/5): 495-506.
  • 6SU S, POHL J H, HOLCOMBE D, et al. Slagging propensities of blended coals [J]. Fuel, 2001, 80(9): 1351 - 1360.
  • 7YINCG, LUOZ Y, ZHOU J H, et al. A novel non linear programming-based coal blending technology for power plants [J]. Chemical Engineering Research and Design, 2000, 78(1): 118-124.
  • 8MAHAMUD M M, NOVO M F. The use of fractal analysis in the textural characterization of coals [J]. Fuel, 2008, 87(2):222-231.
  • 9MAHAMUD M, LOPEZ O, PIS J J, et al. Textural characterization of coals using fractal analysis [J]. Fuel Processing Technology, 2003, 81(2): 127-142.
  • 10MEDEK J, WEISHAUPTOVA Z. The microporous phase of carbonaceous substances and its fractal dimension [J].Fuel, 2000, 79(13): 1621-1626.

二级参考文献36

共引文献61

同被引文献66

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部