期刊文献+

X射线安检设备数字图像品质综合评价方法 被引量:2

Digital Image Quality Evaluation Method of X-Ray Security Inspection System
下载PDF
导出
摘要 为了对X射线安检设备的成像质量进行客观评价,根据GB 15208-2005标准中图像质量评价的方法和要求,参考主观评价的过程,提出了图像处理和模式识别的方法。对测试体A采用基于ROI特征提取的处理方法,对测试体B采用基于色彩信息特征提取的处理方法。介绍了两种方法的处理原理、流程和关键步骤,设计了实现上述算法的软件系统。试验结果表明,在图像存在噪声和畸变等情况下,推荐的算法仍然具有较高的正确率,能够遵循标准的要求对图像质量进行客观评价。 For evaluating the image quality of X-ray security inspection system objectively, according to the testing methods and requirements about image quality evaluating of standard GI3 15208--2005, referring to the process of subjective evaluation, the image processing and mode recognition methods were put forward. ROI-based feature extraction method was carried out for testing block A, while color information based feature extraction method was carried out for testing block B. The principles, processes and key steps of the two signal processing methods were introduced, and thus software system was designed and achieved. Testing results showed that the recommended algorithm was high in accuracy even while the images being of noise and distortions, so it could evaluate the image quality objectively according to the standard.
出处 《无损检测》 2009年第6期428-432,共5页 Nondestructive Testing
基金 民航安全技术分析和鉴定实验室开放研究基金资助项目
关键词 X射线安检设备 人眼视觉特性 图像质量 特征提取 X-ray security inspection system Human visual characteristics Image quality Feature extraction
  • 相关文献

参考文献5

  • 1袁杰辉,魏政刚,蔡元龙.图象质量评价方法综述[J].计算机工程与应用,1998,34(6):26-27. 被引量:5
  • 2Douglas D H, Peucker T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. The Canadian Cartographer, 1973,10(2) : 112-122.
  • 3Teh C H, Chin R T. On the detection of dominant points on digital curves[J]. IEEE Tans on PAMI, 1989,11(8): 859-872.
  • 4Matas J, Galambos C, Kittler J. Progressive Probabilistic Hough Transform[A]. British Machine Vision Conference. England, Southampton: [s. n. ], 1998.
  • 5Fitzigbbon A, Pilum M, Fisher RB. Direct least square fitting of ellipses[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1999,21(5) : 476-480.

共引文献4

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部