期刊文献+

多元插值、多模式现象和无关信息的认定 被引量:4

Multivariable Interpolation, Multi Pattern and the Identification of Irrelevant Information
下载PDF
导出
摘要 本文给出了Lagrange插值多项式在多元情况下的一个推广。讨论了多元插值问题在三层BP神经网络上的实现。得出了与径向基方法基本平行的结果。根据这些结果,指出了神经网络学习过程中可能出现的多模式现象。并举例说明,由于存在这种多模式现象,仅根据神经网络的学习权值的分布来判定输入因素是否重要,可能导致错误的结论。 A kind of multivariable pattern of Lagrange interpolation polynomial and the way to realize it by neural network which parallels the RBF is given. The phenomenon of multi pattern is discussed. For example, we point out that identifying the irrelevant information only by the set of weights of the trained neural network is incredible.
作者 田大钢 费奇
出处 《系统工程与电子技术》 EI CSCD 1998年第6期57-60,共4页 Systems Engineering and Electronics
关键词 插值法 信息处理 神经网络 Multivariable interpolation,Neural network,Irrelevant information.
  • 相关文献

同被引文献30

  • 1田大钢.前馈神经网络的学习能力[J].系统工程理论与实践,2004,24(11):76-81. 被引量:3
  • 2Poggio T, Girosi F. Regularization algorithms for learning that are equivalent to multilayer networks[J]. Science, 1990, 247: 978-982.
  • 3Scarselli F, Tsoi A C. Universal approximation using feedforward neural networks: A survey of some existing methods, and some newresults[J]. Neural Networks, 1998, 11, 15-37.
  • 4Tamura S, Tateishi M. Capabilities of a four-layered feedforward neural network: Four layers versus three[J]. IEEE Trans Neural Networks, 1997, 8: 251-255.
  • 5Sartori M A, et al. A simple method to derive bounds on the size and to train multilayer neural networks[J]. IEEE Trans Neural Networks, 1991, 2: 467-471.
  • 6Huang G B, Learning capability and storage capacity of two-hidden-layer feedforward networks[J], IEEE Trans Neural Networks, 2003, 14: 274-281.
  • 7Huang G B, Babri H A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary hounded nonlinear activation functions[J]. IEEE Trans Neural Networks, 1998, 9: 224-229.
  • 8Huang S C, Huang Y F. Bounds on number of hidden neurons in multilayer perceptrons[J]. IEEE Trans Neural Networks, 1991, 2: 47-55.
  • 9Baum E B, Hausslet D. What size net give valid generalization.? [J]. Neural Comput, 1989, 1 : 151-160.
  • 10Cheng Xiang, Shenqiang Q Ding, Tong Heng Lee. Geometrical interpretation and architecture selection of MLP[J]. IEEE Trans Neural Networks, 2005,16: 84-96.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部