摘要
奥氏体不锈钢通过等离子氮碳共渗可显著提高其表面硬度,从而提高耐磨性而又不损害其抗腐蚀性能。本文采用光学显微镜、显微硬度和微磨损试验对经于450℃等离子氮碳共渗的AISI 316L不锈钢和所获得的渗层进行了表征。结果证明,等离子氮碳共渗层由氮化铬析出相和富氮奥氏体基体组成,其硬度约850 HV;渗层总深度平均约为45μm,且很均匀;渗层的耐磨性大大高于基体。
Hardness and consequently wear resistance of austenitic stainless steel can be highly increased, without loosing corrosion resistance by producing plasma nitrocarburizing surface layers. In this work, a AISI 316L stainless steel plasma nitrocarburized at 450 ℃, and the obtained layers were characterized by optical microscopy, microhardness and micro-wear tests. It was verified that the layer is composed by chromium nitrides precipitates and essentially expanded austenite nitrogen rich and with hardness around 850 HV. The total average thickness of the layer was about 45 μm, presenting good uniformity. Its wear resistance was much higher than that of the substrate.
出处
《热处理》
CAS
2009年第3期17-20,共4页
Heat Treatment
关键词
不锈钢
等离子氮碳共渗
磨损
stainless steel
plasma nitrocarburizing
wear