期刊文献+

一种新型的超声图像斑点噪声抑制算法 被引量:1

A New Algorithm for Ultrasound Image Speckle Suppression
下载PDF
导出
摘要 针对斑点超声图像用传统的提取算法很难取得理想的效果,该文提出了一种基于各向异性扩散方程的超声图像斑点噪声抑制算法,新算法结合了鲁棒估计并考虑了斑点噪声特性,在有效抑制斑点噪声的同时具有更佳的鲁棒性,从而更好地保留甚至增强边缘细节信息。进而又提出了一种自动计算斑点尺度系数的方法,减少了人为因素的影响,提高了算法的稳定性。 Ultrasound image has a lot of speckle noise, which brings great difficulties to the feature extraction, recognition and analysis. Especially in the edge extraction, the conventional extraction algorithms are difficult to achieve the desired results because of the speckle noise. To solve this problem, an algorithm based on the anisotropic diffusion equation is presented. The new algorithm combines the robust estimation and considers the characteristic of the speckle noise, so it can suppress the speckle noise effectively and be more robust, thus the edge details of the ultrasound image can be preserved even enhanced, which can provide effective safeguard for the following edge extraction. Furthermore, the paper proposes a new method to compute speckle scale coefficients automatically, which reduces the influence of the human beings, and enhances the stability of the algorithm.
出处 《中国医疗器械杂志》 CAS 2009年第3期157-162,共6页 Chinese Journal of Medical Instrumentation
基金 安徽省教委自然科学基金重点研究项目(2006KJ097A)
关键词 超声图像 斑点噪声 鲁棒估计 各向异性扩散 ultrasound image, speckle noise, robust estimation, anisotropic diffusion
  • 相关文献

参考文献6

  • 1Loupas T,Mcdicken W N,Allan P L.An adaptive weighted median filter for speckle suppression in medical ultrasoonic images[J].IEEE Transactions on Circuits Systems,1989,36(1):129-135.
  • 2Donoho D L.De-noising by soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.
  • 3Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
  • 4Black M J,Sapiro G,Marimont D H,et al.Robust anisotropic diffusion[J].IEEE Transactions on Image Processing,1998,7(3):421-431.
  • 5Yu Y J,Acton S T.Speckle reducing anisotropic diffusion[J].IEEE Transactions on Image Processing,2002,11(11):1260-1270.
  • 6Michailovich O V,Tannenbaum A.Despeckling of medical ultrasound images[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2006,53(1):64-78.

同被引文献7

  • 1Chou Y H, Tiu C M, Hung G S, et al. Stepwise logistic regression analysis of tumor contour features for breast ultrasound diagnosis [J]. Ultrasound in Medicine and Biology, 2001, 27(11): 1 493-1 498.
  • 2Moon W K, Chang R F, Chen C J, et al. Solid breast masses: classification with computer-aided analysis of continuous US images obtained with probe compression [J]. Radiology, 2005, 236(2): 458-464.
  • 3Chen C J, Chang R F, Moon W K, et al. 2-D ultrasound strain images for breast cancer diagnosis using nonrigid subregion registration [J]. Ultrasound in Medicine and Biology, 2006, 32(6): 837-846.
  • 4Steinberg B D, Sullivan D C, Carlson D L. Disparity mapping applied to sonography of the breast [J]. Radiology, 1998, 207(2): 545-550.
  • 5Chang C C, Lin C J. LIBSVM: a library for support vector machines[EB/OL], http://www, csie. ntu. edu. tw/~ cjlin/libsvrm.
  • 6哈章,李传富,王金萍,周康源,贺礼.基于改进C-V模型的乳腺肿瘤超声图像分割[J].中国医疗器械杂志,2007,31(6):395-399. 被引量:3
  • 7哈章,李传富,王金萍,周康源,杨振森.基于灰阶超声序列图像的乳腺肿瘤良恶性判别[J].中国医疗器械杂志,2008,32(3):186-189. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部