摘要
近年来发展起来的杂交边缘元是一种消除伪解的有效方法。本文提出了一种能系统构造三角形杂交边缘元空问的方法,作为例子具体给出了一次和二次杂交边缘元插值函数的显形表达式,并且用它们分别计算了空波导,条形介质波导和有耗块状介质填充波导的传播常数。计算表明这种方法不仅能消除伪解,而且具有较高的计算效率,两种杂交边缘元计算结果的比较表明高次杂交边缘元的计算精度和收敛速率较低次元有明显的改进。
The mixed-edge dement whie is developed in recent years is an effective method for eliminating the spurious solutions. In this paper, a systematic construction method of the triangular mixed-edge element is proposed. As examples, explicit formulations of the interpolation functions for one- and two-order triangular mixed edge dements are given. The calculations of the dispersion curves for several guiding structures verify that the proposed mixed-edge element not only eliminates the spurious solutions, but also has higher computing efficiency. The comparison between two mixed-edge elements shows that the accuracy and convergence of the low-order mixed-edge element are clearly improved by using the high-order one.
出处
《电子学报》
EI
CAS
CSCD
北大核心
1998年第6期62-66,共5页
Acta Electronica Sinica
基金
国家自然科学基金
教委基金
关键词
系统构造
有限元空间
杂交边缘元
波导
Systematic construction method
Finite element space
Mixed-edge element