期刊文献+

多形状参数的二次双曲多项式曲线 被引量:13

Quadratic Hyperbolic Polynomial Curves with Multiple Shape Parameters
下载PDF
导出
摘要 给出了带多个形状参数的二次双曲多项式基函数,该基函数具有二次非均匀B样条基的绝大多数性质。基于这种基函数,建立了一种带多个形状参数的二次双曲多项式曲线,该类曲线对于非均匀节点为C1连续。根据形状参数的不同取值,曲线的形状既能整体又能局部地变化。并且毋需采用重节点技术或解方程组,就能直接插值某些控制点或控制边。此外,它还能精确表示双曲线。 Quadratic hyperbolic polynomial basis functions with multiple shape parameters are presented in this paper, which possess the most properties of quadratic non-uniform B-spline basis functions. Based on the basis functions, quadratic hyperbolic polynomial curves with multiple shape parameters are constructed. These curves are C^- continuous with a non-uniform knot vector . With different values of the shape parameters, the shapes of the curves can be adjusted totally or locally,, Without using multiple knots or solving equations, the curves can be interpolated given certain control points or control polygon edges directly. And hyperbolic polynomial curves can represent hyperbolas exactly.
作者 谢进 檀结庆
出处 《中国图象图形学报》 CSCD 北大核心 2009年第6期1206-1211,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60773043 60473114) 安徽省自然科学基金项目(070416273X) 安徽省教育厅科技创新团队基金项目(2005TD03) 安徽省教育厅自然科研基金项目(J2008B250)
关键词 B样条曲线 双曲多项式曲线 多形状参数 整体与局部调控 插值 B-splint curve,hyperbolic polynomial curve,multiple shape parameters,totally or locally adjust,interpolation
  • 相关文献

参考文献9

  • 1Piegl L,Tiller M. The NURBS Book[M]. 2nd ed. Berlin: Springer, 1997. 141-188.
  • 2Marnar E, Pena J M, Sanchez- Rayes J, et al. Shape preserving alternatives to the rational Bezier model [ J ] . Computer Aided Geometric Design,2001,18( 1 ) : 37-60.
  • 3Schoenberg I J. On trigonometric spline interpolation [J]. Journal of Mathematics and Mechanics, 1964,13(5 ) :795-825.
  • 4Lyche T,Winther R. A stable recurrence relation for trigonometric B- splines [ J ] . Journal of Approximation Theory, 1979, 25 ( 2 ) : 266-279.
  • 5Lyche T, Schumaker L L. Quasi-interpolations on trigonometric B-spline [J]. Journal of Approximation Theory, 1998, 95 ( 2 ) : 280-309.
  • 6吕勇刚,汪国昭,杨勋年.均匀三角多项式B样条曲线[J].中国科学(E辑),2002,32(2):281-288. 被引量:42
  • 7Zhang Ji- wen, Frank- L Krause, Zhang Huai- yu. Unifying C- curves and H-curves by extending the calculation to complex numbers[ J ]. Computer Aided Geometric Design,2005,22(9) : 865-883.
  • 8Hart Xu-li. Quadratic trigonometric polynomial curves with a shape parameter [ J] . Computer Aided Geometric Design, 2002,19 (7) : 503-512.
  • 9王文涛,汪国昭.带形状参数的双曲多项式均匀B样条[J].软件学报,2005,16(4):625-633. 被引量:43

二级参考文献8

  • 1张纪文,罗国明.三次样条曲线的拓广──C曲线[J].计算机辅助工程,1996,5(3):12-20. 被引量:236
  • 2Lü YG, Wang GZ, Yang XN. Uniform trigonometric polynomial B-spline curves. Science in China (Series F), 2002,45(5):335-343.
  • 3Zhang JW. C-Curves: An extension of cubic curves. Computer Aided Geometric Design, 1996,13(9):199-217.
  • 4Zhang JW. Two different forms of C-B-Splines. Computer Aided Geometric Design, 1997,14(1):31-41.
  • 5Farin G. Curves and surfaces for computer aided geometric design. New York: Academic Press, 1988.
  • 6Piegl L. Modifying the shape of rational B-splines, part1: Surfaces. Computer Aided Design, 1989,21(9):538-546.
  • 7Han XL. Quadratic trigonometric polynomial curves with a shape parameter. Computer Aided Geometric Design, 2002,19(7):503-512.
  • 8Barsky BA. Computer graphics and geometric modeling using beta-splines. New York: Springer-Verlag, 1988.

共引文献73

同被引文献91

引证文献13

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部