摘要
Effect of the axial magnetic field (AMF) on resisting the constriction of a highcurrent vacuum arc is studied in this paper. Two typical AMF distributions were investigated, i.e., the traditional bell-shaped AMF, and the saddle-shaped AMF. Experiments were conducted in a detachable vacuum chamber with arms arc current in the range of 10 kA to 25 kA. The arc column was photographed by a high-speed digital camera with an exposure time of 2 microseconds. The constriction of the vacuum arc was compared by processing the images of the arc column under the two different field configurations and numerically determining the dimensions of the arc column near the electrodes. It was also confirmed that the AMF distribution had a significant influence on its effectiveness in resisting arc constriction. of the arc is more influential than that at the Furthermore, the AMF strength near the periphery centre of the electrodes in resisting arc constriction.
Effect of the axial magnetic field (AMF) on resisting the constriction of a highcurrent vacuum arc is studied in this paper. Two typical AMF distributions were investigated, i.e., the traditional bell-shaped AMF, and the saddle-shaped AMF. Experiments were conducted in a detachable vacuum chamber with arms arc current in the range of 10 kA to 25 kA. The arc column was photographed by a high-speed digital camera with an exposure time of 2 microseconds. The constriction of the vacuum arc was compared by processing the images of the arc column under the two different field configurations and numerically determining the dimensions of the arc column near the electrodes. It was also confirmed that the AMF distribution had a significant influence on its effectiveness in resisting arc constriction. of the arc is more influential than that at the Furthermore, the AMF strength near the periphery centre of the electrodes in resisting arc constriction.
基金
supported by National Natural Science Foundation of China (No.50707022)
Program for New Century Excellent Talents in University of China (No.NCET-06-0830)