期刊文献+

新戊二醇绿色催化合成新工艺 被引量:4

GREEN CATALYTIC PROCESS FOR SYNTHESIS OF NEOPENTYL GLYCOL
下载PDF
导出
摘要 针对以甲醛水溶液合成新戊二醇的工艺过程中废水排放和副反应多的缺点,研究了在无水环境下由异丁醛(IBD)和多聚甲醛(PFA)经羟醛缩合、加氢制备新戊二醇(NPG)的新工艺。结果表明,最佳缩合条件为:反应温度75℃,n(IBD):n(PFA):n(三乙胺)=1:1.07:0.06,反应时间3.5 h下,IBD转化率大于98.2%,羟基戊醛(HPA)收率大于94.0%;HPA加氢反应采用铜基催化剂,在反应温度100℃,H_2压力4.0 MPa,n(H_2):n(醛)=38,液空速0.3~0.8 h^(-1)条件下,HPA转化率99.5%,NPG选择性99.3%。催化剂连续运转800 h,其保持活性不变,说明该催化剂具有较好的稳定性和较长的使用周期;生产过程无废水产生,副反应明显减少。 In order to avoid the waste water and more side reactions in the traditional process for the synthesis of neopentyl glycol (NPG), a new process for the preparation of neopentyl glycol by condensation of iso-butyraldehyde (IBD) and paraformaldehyde (PFA) followed by hydrogenation under anhydrous condition was studied. The results showed that the conversion of IBD reached 98.2% and the yield of hydroxypentylaldehyde (HPA) reached 94.0% in the condensation of IBD and PFA under the following reaction conditions: reaction temperature 75℃, n(IBD) : n(PFA) : n(TEA) = 1.0 : 1.07 : 0.06 and reaction time 3. 5 h. In the hydrogenation of HPA, the conversion of HPA was 99.5%, while the selectivity of NPG was 99.3% under the following reaction conditions, reaction temperature 100 ℃, H2 pressure 4.0 MPa, n(H2) : n(aldehyde) = 38 and liquid hourly space velocity 0.3 - 0. 8 h^-1. There was no obvious decrease in the activity of the catalyst after continuously running for 800 h, indicating that the catalyst had high stability and long lifetime. There was no waste water and the side reactions were appreciably suppressed in the process.
出处 《精细石油化工》 CAS CSCD 北大核心 2009年第3期8-12,共5页 Speciality Petrochemicals
基金 青岛科技大学博士启动基金资助
关键词 新戊二醇 催化加氢 多聚甲醛 铜基催化剂 甲醛水溶液 异丁醛 neopentyl glycol catalytic hydrogenation paraformaldehyde copper-based catalyst
  • 相关文献

参考文献9

二级参考文献16

  • 1许勇,汪仁.CO_2加H_2和Cu-Zn-O催化剂的特性 Ⅰ.Cu-Zn-O催化剂沉淀过程因素的影响[J].工业催化,1994,2(2):27-34. 被引量:5
  • 2许勇,王金安,汪仁.二氧化碳加氢合成甲醇铜基催化剂表面组成的研究[J].燃料化学学报,1994,22(2):176-182. 被引量:8
  • 3Trost B M.Atom Economy,a Challenge for Organic Synthesis--Homogeneous Catalysis Leads the Way.Angew.Chem.Int.Ed.Engl.,1995,34:259
  • 4Salmi T,Serra-Holm V,Rantakyla T K,Mki-Arvela P,Lindfors L P.Development of Clean Technology for the Production of Triols.Green Chemistry,1999(12):283-287
  • 5Salek,Jeffrey S Pugach,Joseph Elias,Carole L Cullo,Leonard A.Manufacture of Trimethylolpropane.US 5763690. 1998
  • 6Serra-Holm V,Salmi T,Kangas M,Mki-Arvela P,Lindfors L P.Kinetics and Phase Equilibria of Competing Aldolization and Elimination in a Three-phase Reactor.Catalysis Today,2001,66:419-426
  • 7Serra-Holm V,Salmi T,Multamaki J,Reinik J,Mki-Arvela P,Sjholm R,Lindfors L P.Aldolization of Butyraldehyde with Formaldehyde over a Commercial Anion-exchange Resin-kinetics and Selectivity Aspects.Applied Catalysis A: General,2000,198:207-221
  • 8Salmi T,Serra-Holm V,Rantakyla T K,Mki-Arvela P,Lindfors L P,Nousiainen Hannu.US 6593502. 2003
  • 9Serra-Holm V,Salmi T. Comparison of Activity and Selectivity of Weakly Basic Anion-exchange Catalysts for the Aldolization of Butyraldehyde with Formaldehyde. Organic Process Research & Development,2001,5:368-375
  • 10Lundstram L,Salmi T,Lehtonen J. Modeling of Specialty Chemicals Production in Liquid-Liquid Reactors--A Case Study: Synthesis of Diols.Chem. Eng. Sci.,1999,54:1-18

共引文献25

同被引文献35

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部