期刊文献+

不规则网格上的曲面设计方法 被引量:1

Constructing Surface on Irregular Meshes
下载PDF
导出
摘要 提出一种在不规则网格上构造曲面的方法.其基本思想是,通过均匀双三次B样条基函数的分解和子基函数的分类,将B样条曲面方法推广到任意四边形网格.给定一个任意四边形控制网格,首先对每个控制点构造一个基函数;所有控制点加权组合形成整体曲面.构造的曲面是分片双三次有理参数多项式曲面.此方法可以看成是均匀B样条曲面构造方法的扩展,如果控制网格是规则四边形网格,那么构造得到的曲面与均匀双三次B样条曲面是一致的.最后,实例证明此方法能够有效地构造曲面. A method is presented for constructing surfaces on irregular meshes. The basic idea is to extend the B-spline method to irregular meshes through the decomposition and classification of uniform bi-cubic B-spline basis function. Given a quad mesh of control points, a basis function is constructed for each control point. Then the surface is defined by the weighted combination of all the control points using their associated basis functions. This surface is a piecewise bi-cubic rational parametric polynomial surface. It is an extension to uniform B-spline surfaces in the sense that its definition is an analogy of the B-spline surface, and it produces a uniform bi-cubic B-spline surface if the control mesh is a regular quad mesh. Examples are also included to show that the new method can be used to construct surface on irregular meshes effectively.
出处 《软件学报》 EI CSCD 北大核心 2009年第6期1673-1684,共12页 Journal of Software
基金 国家自然科学基金Nos.60603077,60633030 国家重点基础研究发展计划(973)No.2006CB303102~~
关键词 不规则网格 B样条曲面 基函数 分片双三次有理参数多项式曲面 irregular mesh B-spline surface basis function piecewise bi-cubic rational parametric polynomial surface
  • 相关文献

参考文献32

  • 1Joy KI. Chaikin's algorithm for curves. On-Line Geometric Modeling Notes, 2000. http://www.idav.ucdavis.edu/education/ CAGDNotes/Chaikins-Algorithm/Chaikins-Algorithm.html.
  • 2Doo D, Sabin M. Behaviour of recursive division surfaces near extraordinary points. Computer Aided Design, 1978,10:356-360.
  • 3Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design, 1978,10: 350-355.
  • 4DeRose T, Kass M, Truong T. Subdivision surfaces in character animation. In: Proc. of the ACM SIGGRAPH 1998. 1998. 85-94 http://doi.acm.org/10.1145/280814.280826.
  • 5Sabin MA. Subdivision surfaces. In: Farin GE, Hoschek J, Kim MS, eds. Proc. of the Handbook of Computer Aided Geometric Design. New York: North Holland, 2002. 309-325.
  • 6Sabin MA. Recent progress in subdivision----A survey. In: Dodgson N, Floaterand MS, Sabin M, eds. Advances in Multiresolution for Geometric Modelling. Berlin: Springer-Verlag, 2004.
  • 7Warren J, Weimer H. Subdivision Methods for Geometric Design, A Constructive Approach. Boston: Morgan Kaufmann Publishers, 2002.
  • 8Peters J, Reif U. Analysis of algorithms generalizing B-spline subdivision. SIAM Journal on Numerical Analysis, 1998,35(2): 728-748.
  • 9Habib A, Warren J. Edge and vertex insertion for a class of C^1 subdivision surfaces. Computer Aided Geometric Design, 1999,16: 223-247.
  • 10Zorin D. Smoothness of subdivision on irregular meshes. Constructive Approximation, 2000,16(3):359-397.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部