期刊文献+

TV图像插值的双方向扩散改进算法 被引量:6

Modified Algorithm with Bidirectional Diffusion for TV Image Interpolation
下载PDF
导出
摘要 提出了一种双方向扩散图像插值方法,有效地减小了插值图像的边缘宽度,从而获得清晰而光滑的图像边缘.这种双方向扩散在图像边缘斜坡较亮一侧进行前向扩散,而在边缘斜坡较暗一侧进行后向扩散.同时,它能根据图像边缘的特征自适应地调整前向、后向扩散强度,从而避免了在插值的图像中产生虚的纹理或边缘.数值实验结果显示,该方法既能很好地减小插值图像的边缘宽度,又不会产生其他人工虚像. In this paper a method of image interpolation based on bidirectional diffusion is proposed. With this method, the edge width of interpolated images is effectively reduced and crisp and smooth edges are obtained. In this bidirectional diffusion, forward diffusion occurs in brighter lateral on edge ramp and backward diffusion proceeds in darker lateral. And the intensity of diffusion is adjusted adaptively according to the image features, which avoid the appearance of artifacts and false textures in the interpolated image. Numerical experiments on real images show that images interpolated with the proposed method have smaller edge width and are almost artifact-free.
出处 《软件学报》 EI CSCD 北大核心 2009年第6期1694-1702,共9页 Journal of Software
基金 国家自然科学基金No.60672096~~
关键词 图像插值 双方向扩散 边缘锐化 偏微分方程 image interpolation bidirectional diffusion edge sharpening partial differential equations
  • 相关文献

参考文献15

  • 1van Ouwerkerk JD. Image super-resolution survey. Image and Vision Computing, 2006,24(10): 1039-1052.
  • 2Aly HA, Dubois E. Image up-sampling using total-variation regularization with a new observation model. IEEE Trans. on Image Processing, 2005,14(10): 1647-1659.
  • 3Sun Q J, Zhang XP, Wu EH. A method of image zooming-in based on B6zier surface interpolation. Journal of Software, 1996,10(6): 570-574 (in Chinese with English abstract), http://www.jos.org.cn/ch/reader/view_abstract.aspx?file_no=19990602&flag=1.
  • 4Belahmidi A, Guichard F. A partial differential equation approach to image zoom. In: Proc. of the 2004 Int'l Conf. on Image Processing (ICIP 2004). Singapore: IEEE Computer Society Press, 2004. 649-652. http://ieeexplore.ieee.org/xpls/abs all.jsp? arnumber- 1418838.
  • 5Hwang JW, Lee HS. Adaptive image interpolation based on local gradient features. IEEE Signal Processing Letters, 2004,11(3): 359-362.
  • 6Cha Y, Kim S. Edge-Forming methods for image zooming. Journal of Mathematical Imaging and Vision, 2006,25(3):353-364.
  • 7Malgouyres F, Guichard F. Edge direction preserving image zooming: A mathematical and numerical analysis. SIAM Journal on Numerical Analysis, 2001,39(1 ): 1-37.
  • 8Bertalmio M, Bertozzi AL, Sapiro G. Navier-Stokes, fluid dynamics, and image and video inpainting. In: Proc. of the 2001 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. 2001. 355-362. http://ieeexplore.ieee.org/xpls/abs all. jsp? arnumber-990497.
  • 9Tsai A, Yezzi A, Willsky AS. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. on Image Processing, 2001,10(8): 1169-1186.
  • 10Aly HA, Dubois E. Specification of the obser 'ation model for regularized image up-sampling. IEEE Trans. on Image Processing, 2005,14(5):567-576.

同被引文献71

  • 1刘政林,邹雪城,向祖权,肖建平,赵慧波,李仕杰.定标器的设计与实现[J].电子学报,2006,34(1):185-188. 被引量:6
  • 2付树军,阮秋琦,穆成坡,王文洽.基于双向耦合扩散的自适应图像插值[J].通信学报,2007,28(2):29-32. 被引量:2
  • 3Archibald R, Gelb A. A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity [J]. IEEE Trans Med Imaging, 2002, 21(4): 305-19.
  • 4Shizgal BD, Jung JH. Towards the resolution of the Gibbs phenomena [J ]. J Comput Appl Math, 2003, 161(1): 41-65.
  • 5Salvado O Hillenbrand CM, Wilson DL. Partial Volume Reduction by interpolation with Reverse Diffusion [J]. Int J Biom Imaging, 2006: 1-13.
  • 6Perona P, Malik J. Scale-Space and Edge Detection Using Aniso-tropic Diffusion [J]. IEEE TransPattem Anal, 1990, 12 (7): 629-39.
  • 7Canny J. A computational approach to edge detection [J]. IEEE Trans Pattern Anal, 1986, 8(6): 679-98.
  • 8Gilboa G, Sochen N, Zeevi YY. Forward-and-backward Diffusion Processes for Adaptive Image Enhancement and Denoising [J]. IEEE Trans Image Process, 2002, 11 (7): 689-703.
  • 9Pollak I, Willsky AS, Krim H. Imaging segmentation and edge enhancement with stabilized inverse diffusion equations [J]. IEEE Trans Image Process, 2000, 9(2): 256-66.
  • 10Remaki L, Cheriet M. Numerical schemes of shock filter models for image enhancement and restoration [J]. J Math Imaging, 2003, 18 (2): 129-43.

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部